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Slater determinants as basis states
The simplest possible choice for many-body wavefunctions are product wave-
functions. That is

Ψ(x1, x2, x3, . . . , xA) ≈ φ1(x1)φ2(x2)φ3(x3) . . .

because we are really only good at thinking about one particle at a time. Such
product wavefunctions, without correlations, are easy to work with; for example,
if the single-particle states φi(x) are orthonormal, then the product wavefunctions
are easy to orthonormalize.

Similarly, computing matrix elements of operators are relatively easy, because
the integrals factorize.

The price we pay is the lack of correlations, which we must build up by using
many, many product wavefunctions.

Because we have fermions, we are required to have antisymmetric wavefunc-
tions, that is

Ψ(x1, x2, x3, . . . , xA) = −Ψ(x2, x1, x3, . . . , xA)

etc. This is accomplished formally by using the determinantal formalism

Ψ(x1, x2, . . . , xA) = 1√
A!

det
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φ1(x1) φ1(x2) . . . φ1(xA)
φ2(x1) φ2(x2) . . . φ2(xA)

...
φA(x1) φA(x2) . . . φA(xA)
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http://computationalphysics.no


Product wavefunction + antisymmetry (Pauli principle) = Slater determinant.
Properties of the determinant (interchange of any two rows or any two

columns yields a change in sign; thus no two rows and no two columns can be
the same) lead to the following consequence of the Pauli principle:

• No two particles can be at the same place (two columns the same); and

• No two particles can be in the same state (two rows the same).

As a practical matter, however, Slater determinants beyond N = 4 quickly
become unwieldy. Thus we turn to the occupation representation or second
quantization to simplify calculations.

The occupation representation, using fermion creation and annihilation
operators, is compact and efficient. It is also abstract and, at first encounter, not
easy to internalize. It is inspired by other operator formalism, such as the ladder
operators for the harmonic oscillator or for angular momentum, but unlike those
cases, the operators do not have coordinate space representations.

Instead, one can think of fermion creation/annihilation operators as a game
of symbols that compactly reproduces what one would do, albeit clumsily, with
full coordinate-space Slater determinants.

We start with a set of orthonormal single-particle states {φi(x)}. (Note: this
requirement, and others, can be relaxed, but leads to a more involved formalism.)
Any orthonormal set will do.

To each single-particle state φi(x) we associate a creation operator â†i and
an annihilation operator âi.

When acting on the vacuum state |0〉, the creation operator â†i causes a
particle to occupy the single-particle state φi(x):

φi(x)→ â†i |0〉

But with multiple creation operators we can occupy multiple states:

φi(x)φj(x′)φk(x′′)→ â†i â
†
j â
†
k|0〉.

Now we impose antisymmetry, by having the fermion operators satisfy anti-
commutation relations:

â†i â
†
j + â†j â

†
i = [â†i , â

†
j ]+ = {â†i , â

†
j} = 0

so that
â†i â
†
j = −â†j â

†
i

Because of this property, automatically â†i â
†
i = 0, enforcing the Pauli exclusion

principle. Thus when writing a Slater determinant using creation operators,

â†i â
†
j â
†
k . . . |0〉

each index i, j, k, . . . must be unique.
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Full Configuration Interaction Theory
We have defined the ansatz for the ground state as

|Φ0〉 =

∏
i≤F

â†i

 |0〉,
where the index i defines different single-particle states up to the Fermi level.
We have assumed that we have N fermions. A given one-particle-one-hole (1p1h)
state can be written as

|Φa
i 〉 = â†aâi|Φ0〉,

while a 2p2h state can be written as

|Φab
ij 〉 = â†aâ

†
bâj âi|Φ0〉,

and a general ApAh state as

|Φabc...
ijk...〉 = â†aâ

†
bâ
†
c . . . âkâj âi|Φ0〉.

We use letters ijkl . . . for states below the Fermi level and abcd . . . for states
above the Fermi level. A general single-particle state is given by letters pqrs . . . .

We can then expand our exact state function for the ground state as

|Ψ0〉 = C0|Φ0〉+
∑
ai

Ca
i |Φa

i 〉+
∑
abij

Cab
ij |Φab

ij 〉+ · · · = (C0 + Ĉ)|Φ0〉,

where we have introduced the so-called correlation operator

Ĉ =
∑
ai

Ca
i â
†
aâi +

∑
abij

Cab
ij â
†
aâ
†
bâj âi + . . .

Since the normalization of Ψ0 is at our disposal and since C0 is by hypothesis
non-zero, we may arbitrarily set C0 = 1 with corresponding proportional changes
in all other coefficients. Using this so-called intermediate normalization we have

〈Ψ0|Φ0〉 = 〈Φ0|Φ0〉 = 1,

resulting in
|Ψ0〉 = (1 + Ĉ)|Φ0〉.

We rewrite

|Ψ0〉 = C0|Φ0〉+
∑
ai

Ca
i |Φa

i 〉+
∑
abij

Cab
ij |Φab

ij 〉+ . . . ,

in a more compact form as

|Ψ0〉 =
∑
P H

CP
HΦP

H =
(∑

P H

CP
HÂ

P
H

)
|Φ0〉,
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where H stands for 0, 1, . . . , n hole states and P for 0, 1, . . . , n particle states.
Our requirement of unit normalization gives

〈Ψ0|Ψ0〉 =
∑
P H

|CP
H |2 = 1,

and the energy can be written as

E = 〈Ψ0|Ĥ|Ψ0〉 =
∑

P P ′HH′

C∗PH 〈ΦP
H |Ĥ|ΦP ′

H′〉CP ′

H′ .

Normally

E = 〈Ψ0|Ĥ|Ψ0〉 =
∑

P P ′HH′

C∗PH 〈ΦP
H |Ĥ|ΦP ′

H′〉CP ′

H′ ,

is solved by diagonalization setting up the Hamiltonian matrix defined by the
basis of all possible Slater determinants. A diagonalization is equivalent to
finding the variational minimum of

〈Ψ0|Ĥ|Ψ0〉 − λ〈Ψ0|Ψ0〉,

where λ is a variational multiplier to be identified with the energy of the system.
The minimization process results in

δ
[
〈Ψ0|Ĥ|Ψ0〉 − λ〈Ψ0|Ψ0〉

]
=

∑
P ′H′

{
δ[C∗PH ]〈ΦP

H |Ĥ|ΦP ′

H′〉CP ′

H′ + C∗PH 〈ΦP
H |Ĥ|ΦP ′

H′〉δ[CP ′

H′ ]− λ(δ[C∗PH ]CP ′

H′ + C∗PH δ[CP ′

H′ ]
}

= 0.

Since the coefficients δ[C∗PH ] and δ[CP ′

H′ ] are complex conjugates it is necessary
and sufficient to require the quantities that multiply with δ[C∗PH ] to vanish.

This leads to ∑
P ′H′

〈ΦP
H |Ĥ|ΦP ′

H′〉CP ′

H′ − λCP
H = 0,

for all sets of P and H.
If we then multiply by the corresponding C∗PH and sum over PH we obtain∑

P P ′HH′

C∗PH 〈ΦP
H |Ĥ|ΦP ′

H′〉CP ′

H′ − λ
∑
P H

|CP
H |2 = 0,

leading to the identification λ = E. This means that we have for all PH sets∑
P ′H′

〈ΦP
H |Ĥ − E|ΦP ′

H′〉 = 0. (1)

An alternative way to derive the last equation is to start from

(Ĥ − E)|Ψ0〉 = (Ĥ − E)
∑

P ′H′

CP ′

H′ |ΦP ′

H′〉 = 0,
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and if this equation is successively projected against all ΦP
H in the expansion of

Ψ, we end up with Eq. (??).
One solves this equation normally by diagonalization. If we are able to solve

this equation exactly (that is numerically exactly) in a large Hilbert space (it
will be truncated in terms of the number of single-particle states included in the
definition of Slater determinants), it can then serve as a benchmark for other
many-body methods which approximate the correlation operator Ĉ.

Example of a Hamiltonian matrix
Suppose, as an example, that we have six fermions below the Fermi level. This
means that we can make at most 6p− 6h excitations. If we have an infinity of
single particle states above the Fermi level, we will obviously have an infinity
of say 2p− 2h excitations. Each such way to configure the particles is called a
configuration. We will always have to truncate in the basis of single-particle
states. This gives us a finite number of possible Slater determinants. Our
Hamiltonian matrix would then look like (where each block can have a large
dimensionalities):

0p− 0h 1p− 1h 2p− 2h 3p− 3h 4p− 4h 5p− 5h 6p− 6h
0p− 0h x x x 0 0 0 0
1p− 1h x x x x 0 0 0
2p− 2h x x x x x 0 0
3p− 3h 0 x x x x x 0
4p− 4h 0 0 x x x x x
5p− 5h 0 0 0 x x x x
6p− 6h 0 0 0 0 x x x

with a two-body force. Why are there non-zero blocks of elements? If we use
a Hartree-Fock basis, this corresponds to a particular unitary transformation
where matrix elements of the type 〈0p− 0h|Ĥ|1p− 1h〉 = 〈Φ0|Ĥ|Φa

i 〉 = 0 and
our Hamiltonian matrix becomes

0p− 0h 1p− 1h 2p− 2h 3p− 3h 4p− 4h 5p− 5h 6p− 6h
0p− 0h x̃ 0 x̃ 0 0 0 0
1p− 1h 0 x̃ x̃ x̃ 0 0 0
2p− 2h x̃ x̃ x̃ x̃ x̃ 0 0
3p− 3h 0 x̃ x̃ x̃ x̃ x̃ 0
4p− 4h 0 0 x̃ x̃ x̃ x̃ x̃
5p− 5h 0 0 0 x̃ x̃ x̃ x̃
6p− 6h 0 0 0 0 x̃ x̃ x̃

If we do not make any truncations in the possible sets of Slater determinants
(many-body states) we can make by distributing A nucleons among n single-
particle states, we call such a calculation for

• Full configuration interaction theory
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If we make truncations, we have different possibilities

• The standard nuclear shell-model. Here we define an effective Hilbert space
with respect to a given core. The calculations are normally then performed
for all many-body states that can be constructed from the effective Hilbert
spaces. This approach requires a properly defined effective Hamiltonian

• We can truncate in the number of excitations. For example, we can limit
the possible Slater determinants to only 1p− 1h and 2p− 2h excitations.
This is called a configuration interaction calculation at the level of singles
and doubles excitations, or just CISD.

• We can limit the number of excitations in terms of the excitation energies.
If we do not define a core, this defines normally what is called the no-core
shell-model approach.

What happens if we have a three-body interaction and a Hartree-Fock basis?
Full configuration interaction theory calculations provide in principle, if we

can diagonalize numerically, all states of interest. The dimensionality of the
problem explodes however quickly.

The total number of Slater determinants which can be built with say N
neutrons distributed among n single particle states is(

n
N

)
= n!

(n−N)!N ! .

For a model space which comprises the first for major shells only 0s, 0p, 1s0d
and 1p0f we have 40 single particle states for neutrons and protons. For the
eight neutrons of oxygen-16 we would then have(

40
8

)
= 40!

(32)!8! ∼ 109,

and multiplying this with the number of proton Slater determinants we end up
with approximately witha dimensionality d of d ∼ 1018.

This number can be reduced if we look at specific symmetries only. However,
the dimensionality explodes quickly!

• For Hamiltonian matrices of dimensionalities which are smaller than
d ∼ 105, we would use so-called direct methods for diagonalizing the
Hamiltonian matrix

• For larger dimensionalities iterative eigenvalue solvers like Lanczos’ method
are used. The most efficient codes at present can handle matrices of
d ∼ 1010.
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A non-practical way of solving the eigenvalue problem
For reasons to come (links with Coupled-Cluster theory and Many-Body pertur-
bation theory), we will rewrite Eq. (??) as a set of coupled non-linear equations in
terms of the unknown coefficients CP

H . To obtain the eigenstates and eigenvalues
in terms of non-linear equations is not a very practical approach. However,
it serves the scope of linking FCI theory with approximative solutions to the
many-body problem.

To see this, we look at the contributions arising from

〈ΦP
H | = 〈Φ0|

in Eq. (??), that is we multiply with 〈Φ0| from the left in

(Ĥ − E)
∑

P ′H′

CP ′

H′ |ΦP ′

H′〉 = 0.

If we assume that we have a two-body operator at most, Slater’s rule gives then
an equation for the correlation energy in terms of Ca

i and Cab
ij only. We get then

〈Φ0|Ĥ − E|Φ0〉+
∑
ai

〈Φ0|Ĥ − E|Φa
i 〉Ca

i +
∑
abij

〈Φ0|Ĥ − E|Φab
ij 〉Cab

ij = 0,

or
E − E0 = ∆E =

∑
ai

〈Φ0|Ĥ|Φa
i 〉Ca

i +
∑
abij

〈Φ0|Ĥ|Φab
ij 〉Cab

ij ,

where the energy E0 is the reference energy and ∆E defines the so-called
correlation energy. The single-particle basis functions could be the results of a
Hartree-Fock calculation or just the eigenstates of the non-interacting part of
the Hamiltonian.

In our notes on Hartree-Fock calculations, we have already computed the
matrix 〈Φ0|Ĥ|Φa

i 〉 and 〈Φ0|Ĥ|Φab
ij 〉. If we are using a Hartree-Fock basis, then

the matrix elements 〈Φ0|Ĥ|Φa
i 〉 = 0 and we are left with a correlation energy

given by
E − E0 = ∆EHF =

∑
abij

〈Φ0|Ĥ|Φab
ij 〉Cab

ij .

Inserting the various matrix elements we can rewrite the previous equation
as

∆E =
∑
ai

〈i|f̂ |a〉Ca
i +

∑
abij

〈ij|v̂|ab〉Cab
ij .

This equation determines the correlation energy but not the coefficients C. We
need more equations. Our next step is to set up

〈Φa
i |Ĥ−E|Φ0〉+

∑
bj

〈Φa
i |Ĥ−E|Φb

j〉Cb
j +
∑
bcjk

〈Φa
i |Ĥ−E|Φbc

jk〉Cbc
jk+

∑
bcdjkl

〈Φa
i |Ĥ−E|Φbcd

jkl〉Cbcd
jkl = 0,
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as this equation will allow us to find an expression for the coefficents Ca
i since

we can rewrite this equation as

〈i|f̂ |a〉+〈Φa
i |Ĥ|Φa

i 〉Ca
i +

∑
bj 6=ai

〈Φa
i |Ĥ|Φb

j〉Cb
j +
∑
bcjk

〈Φa
i |Ĥ|Φbc

jk〉Cbc
jk+

∑
bcdjkl

〈Φa
i |Ĥ|Φbcd

jkl〉Cbcd
jkl = ECa

i .

We see that on the right-hand side we have the energy E. This leads to a
non-linear equation in the unknown coefficients. These equations are normally
solved iteratively ( that is we can start with a guess for the coefficients Ca

i ). A
common choice is to use perturbation theory for the first guess, setting thereby

Ca
i = 〈i|f̂ |a〉

εi − εa
.

The observant reader will however see that we need an equation for Cbc
jk and

Cbcd
jkl as well. To find equations for these coefficients we need then to continue

our multiplications from the left with the various ΦP
H terms.

For Cbc
jk we need then

〈Φab
ij |Ĥ − E|Φ0〉+

∑
kc

〈Φab
ij |Ĥ − E|Φc

k〉Cc
k+

∑
cdkl

〈Φab
ij |Ĥ−E|Φcd

kl 〉Ccd
kl +

∑
cdeklm

〈Φab
ij |Ĥ−E|Φcde

klm〉Ccde
klm+

∑
cdefklmn

〈Φab
ij |Ĥ−E|Φ

cdef
klmn〉C

cdef
klmn = 0,

and we can isolate the coefficients Ccd
kl in a similar way as we did for the

coefficients Ca
i . A standard choice for the first iteration is to set

Cab
ij = 〈ij|v̂|ab〉

εi + εj − εa − εb
.

At the end we can rewrite our solution of the Schroedinger equation in terms of
n coupled equations for the coefficients CP

H . This is a very cumbersome way of
solving the equation. However, by using this iterative scheme we can illustrate
how we can compute the various terms in the wave operator or correlation
operator Ĉ. We will later identify the calculation of the various terms CP

H

as parts of different many-body approximations to full CI. In particular, we
can relate this non-linear scheme with Coupled Cluster theory and many-body
perturbation theory.

Summarizing FCI and bringing in approximative methods
If we can diagonalize large matrices, FCI is the method of choice since:

• It gives all eigenvalues, ground state and excited states

• The eigenvectors are obtained directly from the coefficients CP
H which

result from the diagonalization
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• We can compute easily expectation values of other operators, as well as
transition probabilities

• Correlations are easy to understand in terms of contributions to a given
operator beyond the Hartree-Fock contribution. This is the standard
approach in many-body theory.

The correlation energy is defined as, with a two-body Hamiltonian,

∆E =
∑
ai

〈i|f̂ |a〉Ca
i +

∑
abij

〈ij|v̂|ab〉Cab
ij .

The coefficients C result from the solution of the eigenvalue problem. The
energy of say the ground state is then

E = Eref + ∆E,

where the so-called reference energy is the energy we obtain from a Hartree-Fock
calculation, that is

Eref = 〈Φ0|Ĥ|Φ0〉.
However, as we have seen, even for a small case like the four first major shells

and a nucleus like oxygen-16, the dimensionality becomes quickly intractable. If
we wish to include single-particle states that reflect weakly bound systems, we
need a much larger single-particle basis. We need thus approximative methods
that sum specific correlations to infinite order.

Popular methods are

• Many-body perturbation theory (in essence a Taylor expansion)

• Coupled cluster theory (coupled non-linear equations)

• Green’s function approaches (matrix inversion)

• Similarity group transformation methods (coupled ordinary differential
equations

All these methods start normally with a Hartree-Fock basis as the calculational
basis.

Many-body perturbation theory, in short. If we are looking at the ground
state energy only, we define an effective Hilbert space which comprises only this
state. This space is called the model space.

We can express the correlation energy as a perturbative expression in terms
of ĤI

∆E =
∞∑

i=1
∆E(i).

We get the following expression for ∆E(i)

∆E(1) = 〈Φ0|ĤI |Φ0〉,
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which is just the contribution to first order in perturbation theory,

∆E(2) = 〈Φ0|ĤI
Q̂

W0 − Ĥ0
ĤI |Φ0〉,

which is the contribution to second order.

∆E(3) = 〈Φ0|ĤI
Q̂

W0 − Ĥ0
ĤI

Q̂

W0 − Ĥ0
ĤIΦ0〉−〈Φ0|ĤI

Q̂

W0 − Ĥ0
〈Φ0|ĤI |Φ0〉

Q̂

W0 − Ĥ0
ĤI |Φ0〉,

being the third-order contribution.
In the shell-model we showed that we could rewrite the exact state function

for say the ground state, as a linear expansion in terms of all possible Slater
determinants. That is, we define the ansatz for the ground state as

|Φ0〉 =

∏
i≤F

â†i

 |0〉,
where the index i defines different single-particle states up to the Fermi level.
We have assumed that we have N fermions. A given one-particle-one-hole (1p1h)
state can be written as

|Φa
i 〉 = â†aâi|Φ0〉,

while a 2p2h state can be written as

|Φab
ij 〉 = â†aâ

†
bâj âi|Φ0〉,

and a general ApAh state as

|Φabc...
ijk...〉 = â†aâ

†
bâ
†
c . . . âkâj âi|Φ0〉.

We use letters ijkl . . . for states below the Fermi level and abcd . . . for states
above the Fermi level. A general single-particle state is given by letters pqrs . . . .

We can then expand our exact state function for the ground state as

|Ψ0〉 = C0|Φ0〉+
∑
ai

Ca
i |Φa

i 〉+
∑
abij

Cab
ij |Φab

ij 〉+ · · · = (C0 + Ĉ)|Φ0〉,

where we have introduced the so-called correlation operator

Ĉ =
∑
ai

Ca
i â
†
aâi +

∑
abij

Cab
ij â
†
aâ
†
bâj âi + . . .

Since the normalization of Ψ0 is at our disposal and since C0 is by hypothesis
non-zero, we may arbitrarily set C0 = 1 with corresponding proportional changes
in all other coefficients. Using this so-called intermediate normalization we have

〈Ψ0|Φ0〉 = 〈Φ0|Φ0〉 = 1,
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resulting in
|Ψ0〉 = (1 + Ĉ)|Φ0〉.

In a shell-model calculation, the unknown coefficients in Ĉ are the eigenvectors
which result from the diagonalization of the Hamiltonian matrix.

How can we use perturbation theory to determine the same coefficients? Let
us study the contributions to second order in the interaction, namely

∆E(2) = 〈Φ0|ĤI
Q̂

W0 − Ĥ0
ĤI |Φ0〉.

The intermediate states given by Q̂ can at most be of a 2p− 2h nature if we
have a two-body Hamiltonian. This means that second order in the perturbation
theory can have 1p− 1h and 2p− 2h at most as intermediate states. When we
diagonalize, these contributions are included to infinite order. This means that
higher-orders in perturbation theory bring in more complicated correlations.

If we limit the attention to a Hartree-Fock basis, then we have that 〈Φ0|ĤI |2p−
2h〉 is the only contribution and the contribution to the energy reduces to

∆E(2) = 1
4
∑
abij

〈ij|v̂|ab〉 〈ab|v̂|ij〉
εi + εj − εa − εb

.

If we compare this to the correlation energy obtained from full configuration
interaction theory with a Hartree-Fock basis, we found that

E − E0 = ∆E =
∑
abij

〈ij|v̂|ab〉Cab
ij ,

where the energy E0 is the reference energy and ∆E defines the so-called
correlation energy.

We see that if we set

Cab
ij = 1

4
〈ab|v̂|ij〉

εi + εj − εa − εb
,

we have a perfect agreement between FCI and MBPT. However, FCI includes
such 2p − 2h correlations to infinite order. In order to make a meaningful
comparison we would at least need to sum such correlations to infinite order in
perturbation theory.

Summing up, we can see that

• MBPT introduces order-by-order specific correlations and we make com-
parisons with exact calculations like FCI

• At every order, we can calculate all contributions since they are well-known
and either tabulated or calculated on the fly.

• MBPT is a non-variational theory and there is no guarantee that higher
orders will improve the convergence.
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• However, since FCI calculations are limited by the size of the Hamiltonian
matrices to diagonalize (today’s most efficient codes can attach dimension-
alities of ten billion basis states, MBPT can function as an approximative
method which gives a straightforward (but tedious) calculation recipe.

• MBPT has been widely used to compute effective interactions for the
nuclear shell-model.

• But there are better methods which sum to infinite order important corre-
lations. Coupled cluster theory is one of these methods.

A quick tour of Coupled Cluster theory. The ansatz for the wavefunction
(ground state) is given by

|Ψ〉 = |ΨCC〉 = eT̂ |Φ0〉 =
(

A∑
n=1

1
n! T̂

n

)
|Φ0〉,

where A represents the maximum number of particle-hole excitations and T̂ is
the cluster operator defined as

T̂ = T̂1 + T̂2 + . . .+ T̂A

T̂n =
(

1
n!

)2 ∑
i1,i2,...in

a1,a2,...an

ta1a2...an
i1i2...in

a†a1
a†a2

. . . a†an
ain

. . . ai2ai1 .

The energy is given by
ECC = 〈Φ0|H|Φ0〉,

where H is a similarity transformed Hamiltonian

H = e−T̂ ĤNe
T̂

ĤN = Ĥ − 〈Φ0|Ĥ|Φ0〉.

The coupled cluster energy is a function of the unknown cluster amplitudes
ta1a2...an
i1i2...in

, given by the solutions to the amplitude equations

0 = 〈Φa1...an
i1...in

|H|Φ0〉.

The similarity transformed HamiltonianH is expanded using the Baker-Campbell-
Hausdorff expression,

H = ĤN +
[
ĤN , T̂

]
+ 1

2

[[
ĤN , T̂

]
, T̂
]

+ . . .

1
n!

[
. . .
[
ĤN , T̂

]
, . . . T̂

]
+ . . .
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and simplified using the connected cluster theorem

H = ĤN +
(
ĤN T̂

)
c

+ 1
2

(
ĤN T̂

2
)

c
+ · · ·+ 1

n!

(
ĤN T̂

n
)

c
+ . . .

A much used approximation is to truncate the cluster operator T̂ at the
n = 2 level. This defines the so-called approximation to the Coupled Cluster
wavefunction.

The coupled cluster wavefunction is now given by

|ΨCC〉 = eT̂1+T̂2 |Φ0〉

where

T̂1 =
∑
ia

tai a
†
aai

T̂2 = 1
4
∑
ijab

tab
ij a
†
aa
†
bajai.

The amplutudes t play a role similar to the coefficients C in the shell-model
calculations. They are obtained by solving a set of non-linear equations similar
to those discussed above in connection withe FCI discussion.

If we truncate our equations at the CCSD level, it corresponds to performing
a transformation of the Hamiltonian matrix of the following type for a six particle
problem (with a two-body Hamiltonian):

0p− 0h 1p− 1h 2p− 2h 3p− 3h 4p− 4h 5p− 5h 6p− 6h
0p− 0h x̃ x̃ x̃ 0 0 0 0
1p− 1h 0 x̃ x̃ x̃ 0 0 0
2p− 2h 0 x̃ x̃ x̃ x̃ 0 0
3p− 3h 0 x̃ x̃ x̃ x̃ x̃ 0
4p− 4h 0 0 x̃ x̃ x̃ x̃ x̃
5p− 5h 0 0 0 x̃ x̃ x̃ x̃
6p− 6h 0 0 0 0 x̃ x̃ x̃

In our FCI discussion the correlation energy is defined as, with a two-body
Hamiltonian,

∆E =
∑
ai

〈i|f̂ |a〉Ca
i +

∑
abij

〈ij|v̂|ab〉Cab
ij .

In Coupled cluster theory it becomes (irrespective of level of truncation of T )

∆E =
∑
ai

〈i|f̂ |a〉tai +
∑
abij

〈ij|v̂|ab〉tab
ij .

Coupled cluster theory has several interesting computational features and
is the method of choice in quantum chemistry. There are several interesting
features:
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• With a truncation like CCSD or CCSDT, we can include to infinite order
correlations like 2p− 2h.

• We can include a large basis of single-particle states, not possible in
standard FCI calculations

However, Coupled Cluster theory is

• non-variational

• if we want to find properties of excited states, additional calculations via
for example equation of motion methods are needed

• if correlations are strong, a single-reference ansatz may not be the best
starting point

• we cannot quantify properly the error we make when truncations are made
in the cluster operator
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