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Why Hartree-Fock? Derivation of Hartree-Fock equations
Hartree-Fock (HF) theory is an algorithm for finding an approximative expression
for the ground state of a given Hamiltonian. The basic ingredients are

• Define a single-particle basis {ψα} so that

ĥHFψα = εαψα

with the Hartree-Fock Hamiltonian defined as

ĥHF = t̂+ ûext + ûHF

• The term ûHF is a single-particle potential to be determined by the HF
algorithm.

• The HF algorithm means to choose ûHF in order to have

〈Ĥ〉 = EHF = 〈Φ0|Ĥ|Φ0〉

that is to find a local minimum with a Slater determinant Φ0 being the ansatz
for the ground state.

• The variational principle ensures that EHF ≥ E0, with E0 the exact ground
state energy.

http://computationalphysics.no


We will show that the Hartree-Fock Hamiltonian ĥHF equals our definition of the
operator f̂ discussed in connection with the new definition of the normal-ordered
Hamiltonian (see later lectures), that is we have, for a specific matrix element

〈p|ĥHF|q〉 = 〈p|f̂ |q〉 = 〈p|t̂+ ûext|q〉+
∑
i≤F

〈pi|V̂ |qi〉AS ,

meaning that
〈p|ûHF|q〉 =

∑
i≤F

〈pi|V̂ |qi〉AS .

The so-called Hartree-Fock potential ûHF brings an explicit medium dependence
due to the summation over all single-particle states below the Fermi level F . It
brings also in an explicit dependence on the two-body interaction (in nuclear
physics we can also have complicated three- or higher-body forces). The two-
body interaction, with its contribution from the other bystanding fermions,
creates an effective mean field in which a given fermion moves, in addition to the
external potential ûext which confines the motion of the fermion. For systems like
nuclei, there is no external confining potential. Nuclei are examples of self-bound
systems, where the binding arises due to the intrinsic nature of the strong force.
For nuclear systems thus, there would be no external one-body potential in the
Hartree-Fock Hamiltonian.

Variational Calculus and Lagrangian Multipliers
The calculus of variations involves problems where the quantity to be minimized
or maximized is an integral.

In the general case we have an integral of the type

E[Φ] =
∫ b

a

f(Φ(x), ∂Φ
∂x

, x)dx,

where E is the quantity which is sought minimized or maximized. The problem
is that although f is a function of the variables Φ, ∂Φ/∂x and x, the exact
dependence of Φ on x is not known. This means again that even though the
integral has fixed limits a and b, the path of integration is not known. In our
case the unknown quantities are the single-particle wave functions and we wish
to choose an integration path which makes the functional E[Φ] stationary. This
means that we want to find minima, or maxima or saddle points. In physics
we search normally for minima. Our task is therefore to find the minimum of
E[Φ] so that its variation δE is zero subject to specific constraints. In our case
the constraints appear as the integral which expresses the orthogonality of the
single-particle wave functions. The constraints can be treated via the technique
of Lagrangian multipliers

Let us specialize to the expectation value of the energy for one particle in
three-dimensions. This expectation value reads

E =
∫
dxdydzψ∗(x, y, z)Ĥψ(x, y, z),
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with the constraint ∫
dxdydzψ∗(x, y, z)ψ(x, y, z) = 1,

and a Hamiltonian
Ĥ = −1

2∇
2 + V (x, y, z).

We will, for the sake of notational convenience, skip the variables x, y, z below,
and write for example V (x, y, z) = V .

The integral involving the kinetic energy can be written as, with the function
ψ vanishing strongly for large values of x, y, z (given here by the limits a and b),∫ b

a

dxdydzψ∗
(
−1

2∇
2
)
ψdxdydz = ψ∗∇ψ|ba +

∫ b

a

dxdydz
1
2∇ψ

∗∇ψ.

We will drop the limits a and b in the remaining discussion. Inserting this
expression into the expectation value for the energy and taking the variational
minimum we obtain

δE = δ

{∫
dxdydz

(
1
2∇ψ

∗∇ψ + V ψ∗ψ

)}
= 0.

The constraint appears in integral form as∫
dxdydzψ∗ψ = constant,

and multiplying with a Lagrangian multiplier λ and taking the variational
minimum we obtain the final variational equation

δ

{∫
dxdydz

(
1
2∇ψ

∗∇ψ + V ψ∗ψ − λψ∗ψ
)}

= 0.

We introduce the function f

f = 1
2∇ψ

∗∇ψ + V ψ∗ψ − λψ∗ψ = 1
2(ψ∗xψx + ψ∗yψy + ψ∗zψz) + V ψ∗ψ − λψ∗ψ,

where we have skipped the dependence on x, y, z and introduced the shorthand
ψx, ψy and ψz for the various derivatives.

For ψ∗ the Euler-Lagrange equations yield

∂f

∂ψ∗
− ∂

∂x

∂f

∂ψ∗x
− ∂

∂y

∂f

∂ψ∗y
− ∂

∂z

∂f

∂ψ∗z
= 0,

which results in
−1

2(ψxx + ψyy + ψzz) + V ψ = λψ.

We can then identify the Lagrangian multiplier as the energy of the system.
The last equation is nothing but the standard Schroedinger equation and the
variational approach discussed here provides a powerful method for obtaining
approximate solutions of the wave function.
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Definitions and notations
Before we proceed we need some definitions. We will assume that the interacting
part of the Hamiltonian can be approximated by a two-body interaction. This
means that our Hamiltonian is written as the sum of some onebody part and a
twobody part

Ĥ = Ĥ0 + ĤI =
A∑
i=1

ĥ0(xi) +
A∑
i<j

v̂(rij), (1)

with

H0 =
A∑
i=1

ĥ0(xi). (2)

The onebody part uext(xi) is normally approximated by a harmonic oscillator
potential or the Coulomb interaction an electron feels from the nucleus. However,
other potentials are fully possible, such as one derived from the self-consistent
solution of the Hartree-Fock equations to be discussed here.

Our Hamiltonian is invariant under the permutation (interchange) of two
particles. Since we deal with fermions however, the total wave function is
antisymmetric. Let P̂ be an operator which interchanges two particles. Due to
the symmetries we have ascribed to our Hamiltonian, this operator commutes
with the total Hamiltonian,

[Ĥ, P̂ ] = 0,

meaning that Ψλ(x1, x2, . . . , xA) is an eigenfunction of P̂ as well, that is

P̂ijΨλ(x1, x2, . . . , xi, . . . , xj , . . . , xA) = βΨλ(x1, x2, . . . , xi, . . . , xj , . . . , xA),

where β is the eigenvalue of P̂ . We have introduced the suffix ij in order to
indicate that we permute particles i and j. The Pauli principle tells us that the
total wave function for a system of fermions has to be antisymmetric, resulting
in the eigenvalue β = −1.

In our case we assume that we can approximate the exact eigenfunction with
a Slater determinant

Φ(x1, x2, . . . , xA, α, β, . . . , σ) = 1√
A!

∣∣∣∣∣∣∣∣∣∣
ψα(x1) ψα(x2) . . . . . . ψα(xA)
ψβ(x1) ψβ(x2) . . . . . . ψβ(xA)
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .

ψσ(x1) ψσ(x2) . . . . . . ψσ(xA)

∣∣∣∣∣∣∣∣∣∣
,

(3)
where xi stand for the coordinates and spin values of a particle i and α, β, . . . , γ
are quantum numbers needed to describe remaining quantum numbers.

The single-particle function ψα(xi) are eigenfunctions of the onebody Hamil-
tonian hi, that is

ĥ0(xi) = t̂(xi) + ûext(xi),
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with eigenvalues

ĥ0(xi)ψα(xi) =
(
t̂(xi) + ûext(xi)

)
ψα(xi) = εαψα(xi).

The energies εα are the so-called non-interacting single-particle energies, or
unperturbed energies. The total energy is in this case the sum over all single-
particle energies, if no two-body or more complicated many-body interactions
are present.

Let us denote the ground state energy by E0. According to the variational
principle we have

E0 ≤ E[Φ] =
∫

Φ∗ĤΦdτ

where Φ is a trial function which we assume to be normalized∫
Φ∗Φdτ = 1,

where we have used the shorthand dτ = dx1dr2 . . . drA.
In the Hartree-Fock method the trial function is the Slater determinant of

Eq. (??) which can be rewritten as

Φ(x1, x2, . . . , xA, α, β, . . . , ν) = 1√
A!

∑
P

(−)P P̂ψα(x1)ψβ(x2) . . . ψν(xA) =
√
A!ÂΦH ,

where we have introduced the antisymmetrization operator Â defined by the
summation over all possible permutations of two particles.

It is defined as
Â = 1

A!
∑
p

(−)pP̂ , (4)

with p standing for the number of permutations. We have introduced for later
use the so-called Hartree-function, defined by the simple product of all possible
single-particle functions

ΦH(x1, x2, . . . , xA, α, β, . . . , ν) = ψα(x1)ψβ(x2) . . . ψν(xA).

Both Ĥ0 and ĤI are invariant under all possible permutations of any two
particles and hence commute with Â

[H0, Â] = [HI , Â] = 0. (5)

Furthermore, Â satisfies
Â2 = Â, (6)

since every permutation of the Slater determinant reproduces it.
The expectation value of Ĥ0∫

Φ∗Ĥ0Φdτ = A!
∫

Φ∗HÂĤ0ÂΦHdτ
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is readily reduced to ∫
Φ∗Ĥ0Φdτ = A!

∫
Φ∗HĤ0ÂΦHdτ,

where we have used Eqs. (??) and (??). The next step is to replace the anti-
symmetrization operator by its definition and to replace Ĥ0 with the sum of
one-body operators∫

Φ∗Ĥ0Φdτ =
A∑
i=1

∑
p

(−)p
∫

Φ∗H ĥ0P̂ΦHdτ.

The integral vanishes if two or more particles are permuted in only one of
the Hartree-functions ΦH because the individual single-particle wave functions
are orthogonal. We obtain then∫

Φ∗Ĥ0Φdτ =
A∑
i=1

∫
Φ∗H ĥ0ΦHdτ.

Orthogonality of the single-particle functions allows us to further simplify the
integral, and we arrive at the following expression for the expectation values of
the sum of one-body Hamiltonians∫

Φ∗Ĥ0Φdτ =
A∑
µ=1

∫
ψ∗µ(x)ĥ0ψµ(x)dxdr. (7)

We introduce the following shorthand for the above integral

〈µ|ĥ0|µ〉 =
∫
ψ∗µ(x)ĥ0ψµ(x)dx,

and rewrite Eq. (??) as ∫
Φ∗Ĥ0Φdτ =

A∑
µ=1
〈µ|ĥ0|µ〉. (8)

The expectation value of the two-body part of the Hamiltonian is obtained
in a similar manner. We have∫

Φ∗ĤIΦdτ = A!
∫

Φ∗HÂĤIÂΦHdτ,

which reduces to∫
Φ∗ĤIΦdτ =

A∑
i≤j=1

∑
p

(−)p
∫

Φ∗H v̂(rij)P̂ΦHdτ,

by following the same arguments as for the one-body Hamiltonian.
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Because of the dependence on the inter-particle distance rij , permutations of
any two particles no longer vanish, and we get∫

Φ∗ĤIΦdτ =
A∑

i<j=1

∫
Φ∗H v̂(rij)(1− Pij)ΦHdτ.

where Pij is the permutation operator that interchanges particle i and particle
j. Again we use the assumption that the single-particle wave functions are
orthogonal.

We obtain∫
Φ∗ĤIΦdτ = 1

2

A∑
µ=1

A∑
ν=1

[∫
ψ∗µ(xi)ψ∗ν(xj)v̂(rij)ψµ(xi)ψν(xj)dxidxj −

∫
ψ∗µ(xi)ψ∗ν(xj)v̂(rij)ψν(xi)ψµ(xj)dxidxj

]
.

(9)
The first term is the so-called direct term. It is frequently also called the Hartree
term, while the second is due to the Pauli principle and is called the exchange
term or just the Fock term. The factor 1/2 is introduced because we now run
over all pairs twice.

The last equation allows us to introduce some further definitions. The single-
particle wave functions ψµ(x), defined by the quantum numbers µ and x are
defined as the overlap

ψα(x) = 〈x|α〉.

We introduce the following shorthands for the above two integrals

〈µν|v̂|µν〉 =
∫
ψ∗µ(xi)ψ∗ν(xj)v̂(rij)ψµ(xi)ψν(xj)dxidxj ,

and
〈µν|v̂|νµ〉 =

∫
ψ∗µ(xi)ψ∗ν(xj)v̂(rij)ψν(xi)ψµ(xj)dxidxj .

Hartree-Fock by varying the coefficients of a wave function
expansion
The standard method to derive the Hartree-Fock equations (from a computational
point of view)is to expand the single-particle functions in a known basis and
vary the coefficients, that is, the new single-particle wave function is written
as a linear expansion in terms of a fixed chosen orthogonal basis (for example
the well-known harmonic oscillator functions or the hydrogen-like functions etc).
We define our new Hartree-Fock single-particle basis by performing a unitary
transformation on our previous basis (labelled with greek indices) as

ψHFp =
∑
λ

Cpλφλ. (10)

In this case we vary the coefficients Cpλ. If the basis has infinitely many solutions,
we need to truncate the above sum. We assume that the basis φλ is orthogonal.
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A unitary transformation keeps the orthogonality, as discussed in exercise 1
below.

It is normal to choose a single-particle basis defined as the eigenfunctions of
parts of the full Hamiltonian. The typical situation consists of the solutions of
the one-body part of the Hamiltonian, that is we have

ĥ0φλ = ελφλ.

The single-particle wave functions φλ(r), defined by the quantum numbers λ
and r are defined as the overlap

φλ(r) = 〈r|λ〉.

In our discussions hereafter we will use our definitions of single-particle states
above and below the Fermi (F ) level given by the labels ijkl · · · ≤ F for so-called
single-hole states and abcd · · · > F for so-called particle states. For general
single-particle states we employ the labels pqrs . . . .

The equation for the energy with one Slater determinant as ansatz for the
ground state is

E[Φ] =
A∑
µ=1
〈µ|h|µ〉+ 1

2

A∑
µ=1

A∑
ν=1
〈µν|v̂|µν〉AS ,

we found the expression for the energy functional in terms of the basis function
φλ(r). We then varied the above energy functional with respect to the basis
functions |µ〉. Now we are interested in defining a new basis defined in terms of
a chosen basis as defined in Eq. (??). We can then rewrite the energy functional
as

E[ΦHF ] =
A∑
i=1
〈i|h|i〉+ 1

2

A∑
ij=1
〈ij|v̂|ij〉AS , (11)

where ΦHF is the new Slater determinant defined by the new basis of Eq. (??).
Using Eq. (??) we can rewrite Eq. (??) as

E[Ψ] =
A∑
i=1

∑
αβ

C∗iαCiβ〈α|h|β〉+ 1
2

A∑
ij=1

∑
αβγδ

C∗iαC
∗
jβCiγCjδ〈αβ|v̂|γδ〉AS . (12)

We wish now to minimize the above functional. We introduce again a set
of Lagrange multipliers, noting that since 〈i|j〉 = δi,j and 〈α|β〉 = δα,β , the
coefficients Ciγ obey the relation

〈i|j〉 = δi,j =
∑
αβ

C∗iαCiβ〈α|β〉 =
∑
α

C∗iαCiα,

which allows us to define a functional to be minimized that reads

F [ΦHF ] = E[ΦHF ]−
A∑
i=1

εi
∑
α

C∗iαCiα. (13)
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Minimizing with respect to C∗iα, remembering that the equations for C∗iα and
Ciα can be written as two independent equations, we obtain

d

dC∗iα

E[ΦHF ]−
∑
j

εj
∑
α

C∗jαCjα

 = 0,

which yields for every single-particle state i and index α (recalling that the
coefficients Ciα are matrix elements of a unitary (or orthogonal for a real
symmetric matrix) matrix) the following Hartree-Fock equations

∑
β

Ciβ〈α|h|β〉+
A∑
j=1

∑
βγδ

C∗jβCjδCiγ〈αβ|v̂|γδ〉AS = εHFi Ciα.

We can rewrite this equation as (changing dummy variables)

∑
β

〈α|h|β〉+
A∑
j

∑
γδ

C∗jγCjδ〈αγ|v̂|βδ〉AS

Ciβ = εHFi Ciα.

Note that the sums over greek indices run over the number of basis set functions
(in principle an infinite number).

Defining

hHFαβ = 〈α|h|β〉+
A∑
j=1

∑
γδ

C∗jγCjδ〈αγ|v̂|βδ〉AS ,

we can rewrite the new equations as∑
γ

hHFαβ Ciβ = εHFi Ciα. (14)

The latter is nothing but a standard eigenvalue problem.
We see that we do not need to compute any integrals in an iterative procedure

for solving the equations. It suffices to tabulate the matrix elements 〈α|h|β〉 and
〈αγ|v̂|βδ〉AS once and for all. Successive iterations require thus only a look-up
in tables over one-body and two-body matrix elements.

Hartree-Fock algorithm
Our Hartree-Fock matrix is thus

ĥHFαβ = 〈α|ĥ0|β〉+
A∑
j=1

∑
γδ

C∗jγCjδ〈αγ|v̂|βδ〉AS .

The Hartree-Fock equations are solved in an iterative waym starting with a
guess for the coefficients Cjγ = δj,γ and solving the equations by diagonalization
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till the new single-particle energies εHF
i do not change anymore by a prefixed

quantity.
Normally we assume that the single-particle basis |β〉 forms an eigenbasis for

the operator ĥ0, meaning that the Hartree-Fock matrix becomes

ĥHFαβ = εαδα,β +
A∑
j=1

∑
γδ

C∗jγCjδ〈αγ|v̂|βδ〉AS .

The Hartree-Fock eigenvalue problem∑
β

ĥHFαβ Ciβ = εHF
i Ciα,

can be written out in a more compact form as

ĥHF Ĉ = εHFĈ.

The Hartree-Fock equations are, in their simplest form, solved in an iterative
way, starting with a guess for the coefficients Ciα. We label the coefficients as
C

(n)
iα , where the subscript n stands for iteration n. To set up the algorithm we

can proceed as follows:

• We start with a guess C(0)
iα = δi,α. Alternatively, we could have used

random starting values as long as the vectors are normalized. Another
possibility is to give states below the Fermi level a larger weight.

• The Hartree-Fock matrix simplifies then to (assuming that the coefficients
Ciα are real)

ĥHFαβ = εαδα,β +
A∑
j=1

∑
γδ

C
(0)
jγ C

(0)
jδ 〈αγ|v̂|βδ〉AS .

Solving the Hartree-Fock eigenvalue problem yields then new eigenvectors
C

(1)
iα and eigenvalues εHF (1)

i .

• With the new eigenvalues we can set up a new Hartree-Fock potential
A∑
j=1

∑
γδ

C
(1)
jγ C

(1)
jδ 〈αγ|v̂|βδ〉AS .

The diagonalization with the new Hartree-Fock potential yields new eigenvectors
and eigenvalues. This process is continued till for example∑

p |ε
(n)
i − ε(n−1)

i |
m

≤ λ,

where λ is a user prefixed quantity (λ ∼ 10−8 or smaller) and p runs over all
calculated single-particle energies and m is the number of single-particle states.
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Analysis of Hartree-Fock equations and Koopman’s theo-
rem
We can rewrite the ground state energy by adding and subtracting ûHF (xi)

EHF0 = 〈Φ0|Ĥ|Φ0〉 =
A∑
i≤F

〈i|ĥ0+ûHF |j〉+1
2

A∑
i≤F

A∑
j≤F

[〈ij|v̂|ij〉 − 〈ij|v̂|ji〉]−
A∑
i≤F

〈i|ûHF |i〉,

which results in

EHF0 =
A∑
i≤F

εHFi + 1
2

A∑
i≤F

A∑
j≤F

[〈ij|v̂|ij〉 − 〈ij|v̂|ji〉]−
A∑
i≤F

〈i|ûHF |i〉.

Our single-particle states ijk . . . are now single-particle states obtained from the
solution of the Hartree-Fock equations.

Using our definition of the Hartree-Fock single-particle energies we obtain
then the following expression for the total ground-state energy

EHF0 =
A∑
i≤F

εi −
1
2

A∑
i≤F

A∑
j≤F

[〈ij|v̂|ij〉 − 〈ij|v̂|ji〉] .

This form will be used in our discussion of Koopman’s theorem.
In the atomic physics case we have

E[ΦHF(N)] =
H∑
i=1
〈i|ĥ0|i〉+ 1

2

N∑
ij=1
〈ij|v̂|ij〉AS ,

where ΦHF(N) is the new Slater determinant defined by the new basis of Eq. (??)
for N electrons (same Z). If we assume that the single-particle wave functions
in the new basis do not change when we remove one electron or add one electron,
we can then define the corresponding energy for the N − 1 systems as

E[ΦHF(N − 1)] =
N∑

i=1;i 6=k
〈i|ĥ0|i〉+ 1

2

N∑
ij=1;i,j 6=k

〈ij|v̂|ij〉AS ,

where we have removed a single-particle state k ≤ F , that is a state below the
Fermi level.

Calculating the difference

E[ΦHF(N)]−E[ΦHF(N−1)] = 〈k|ĥ0|k〉+
1
2

N∑
i=1;i6=k

〈ik|v̂|ik〉AS
1
2

N∑
j=1;j 6=k

〈kj|v̂|kj〉AS ,

we obtain

E[ΦHF(N)]− E[ΦHF(N − 1)] = 〈k|ĥ0|k〉+ 1
2

N∑
j=1
〈kj|v̂|kj〉AS
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which is just our definition of the Hartree-Fock single-particle energy

E[ΦHF(N)]− E[ΦHF(N − 1)] = εHF
k

Similarly, we can now compute the difference (we label the single-particle
states above the Fermi level as abcd > F )

E[ΦHF(N + 1)]− E[ΦHF(N)] = εHF
a .

These two equations can thus be used to the electron affinity or ionization energies,
respectively. Koopman’s theorem states that for example the ionization energy of
a closed-shell system is given by the energy of the highest occupied single-particle
state. If we assume that changing the number of electrons from N to N + 1 does
not change the Hartree-Fock single-particle energies and eigenfunctions, then
Koopman’s theorem simply states that the ionization energy of an atom is given
by the single-particle energy of the last bound state. In a similar way, we can
also define the electron affinities.

As an example, consider a simple model for atomic sodium, Na. Neutral
sodium has eleven electrons, with the weakest bound one being confined the 3s
single-particle quantum numbers. The energy needed to remove an electron from
neutral sodium is rather small, 5.1391 eV, a feature which pertains to all alkali
metals. Having performed a Hartree-Fock calculation for neutral sodium would
then allows us to compute the ionization energy by using the single-particle
energy for the 3s states, namely εHF

3s .
From these considerations, we see that Hartree-Fock theory allows us to make

a connection between experimental observables (here ionization and affinity
energies) and the underlying interactions between particles. In this sense, we are
now linking the dynamics and structure of a many-body system with the laws of
motion which govern the system. Our approach is a reductionistic one, meaning
that we want to understand the laws of motion in terms of the particles or degrees
of freedom which we believe are the fundamental ones. Our Slater determinant,
being constructed as the product of various single-particle functions, follows this
philosophy.

With similar arguments as in atomic physics, we can now use Hartree-Fock
theory to make a link between nuclear forces and separation energies. Changing
to nuclear system, we define

E[ΦHF(A)] =
A∑
i=1
〈i|ĥ0|i〉+ 1

2

A∑
ij=1
〈ij|v̂|ij〉AS ,

where ΦHF(A) is the new Slater determinant defined by the new basis of Eq. (??)
for A nucleons, where A = N + Z, with N now being the number of neutrons
and Z th enumber of protons. If we assume again that the single-particle wave
functions in the new basis do not change from a nucleus with A nucleons to a
nucleus with A− 1 nucleons, we can then define the corresponding energy for
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the A− 1 systems as

E[ΦHF(A− 1)] =
A∑

i=1;i 6=k
〈i|ĥ0|i〉+ 1

2

A∑
ij=1;i,j 6=k

〈ij|v̂|ij〉AS ,

where we have removed a single-particle state k ≤ F , that is a state below the
Fermi level.

Calculating the difference

E[ΦHF(A)]−E[ΦHF(A−1)] = 〈k|ĥ0|k〉+
1
2

A∑
i=1;i 6=k

〈ik|v̂|ik〉AS
1
2

A∑
j=1;j 6=k

〈kj|v̂|kj〉AS ,

which becomes

E[ΦHF(A)]− E[ΦHF(A− 1)] = 〈k|ĥ0|k〉+ 1
2

A∑
j=1
〈kj|v̂|kj〉AS

which is just our definition of the Hartree-Fock single-particle energy

E[ΦHF(A)]− E[ΦHF(A− 1)] = εHF
k

Similarly, we can now compute the difference (recall that the single-particle
states abcd > F )

E[ΦHF(A+ 1)]− E[ΦHF(A)] = εHF
a .

If we then recall that the binding energy differences

BE(A)−BE(A− 1) and BE(A+ 1)−BE(A),

define the separation energies, we see that the Hartree-Fock single-particle
energies can be used to define separation energies. We have thus our first link
between nuclear forces (included in the potential energy term) and an observable
quantity defined by differences in binding energies.

We have thus the following interpretations (if the single-particle field do not
change)

BE(A)−BE(A− 1) ≈ E[ΦHF(A)]− E[ΦHF(A− 1)] = εHF
k ,

and
BE(A+ 1)−BE(A) ≈ E[ΦHF(A+ 1)]− E[ΦHF(A)] = εHF

a .

If we use 16O as our closed-shell nucleus, we could then interpret the separation
energy

BE(16O)−BE(15O) ≈ εHF
0pν1/2

,

and
BE(16O)−BE(15N) ≈ εHF

0pπ1/2
.
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Similalry, we could interpret

BE(17O)−BE(16O) ≈ εHF
0dν5/2

,

and
BE(17F)−BE(16O) ≈ εHF

0dπ5/2
.

We can continue like this for all A± 1 nuclei where A is a good closed-shell (or
subshell closure) nucleus. Examples are 22O, 24O, 40Ca, 48Ca, 52Ca, 54Ca, 56Ni,
68Ni, 78Ni, 90Zr, 88Sr, 100Sn, 132Sn and 208Pb, to mention some possile cases.

We can thus make our first interpretation of the separation energies in terms
of the simplest possible many-body theory. If we also recall that the so-called
energy gap for neutrons (or protons) is defined as

∆Sn = 2BE(N,Z)−BE(N − 1, Z)−BE(N + 1, Z),

for neutrons and the corresponding gap for protons

∆Sp = 2BE(N,Z)−BE(N,Z − 1)−BE(N,Z + 1),

we can define the neutron and proton energy gaps for 16O as

∆Sν = εHF
0dν5/2

− εHF
0pν1/2

,

and
∆Sπ = εHF

0dπ5/2
− εHF

0pπ1/2
.
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