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Second quantization
We introduce the time-independent operators a†α and aα which create and
annihilate, respectively, a particle in the single-particle state ϕα. We define the
fermion creation operator a†α

a†α|0〉 ≡ |α〉, (1)

and
a†α|α1 . . . αn〉AS ≡ |αα1 . . . αn〉AS (2)

In Eq. (??) the operator a†α acts on the vacuum state |0〉, which does not
contain any particles. Alternatively, we could define a closed-shell nucleus or
atom as our new vacuum, but then we need to introduce the particle-hole
formalism, see the discussion to come.

In Eq. (??) a†α acts on an antisymmetric n-particle state and creates an
antisymmetric (n+ 1)-particle state, where the one-body state ϕα is occupied,
under the condition that α 6= α1, α2, . . . , αn. It follows that we can express
an antisymmetric state as the product of the creation operators acting on the
vacuum state.

|α1 . . . αn〉AS = a†α1
a†α2

. . . a†αn
|0〉 (3)

It is easy to derive the commutation and anticommutation rules for the
fermionic creation operators a†α. Using the antisymmetry of the states (??)

|α1 . . . αi . . . αk . . . αn〉AS = −|α1 . . . αk . . . αi . . . αn〉AS (4)

http://computationalphysics.no


we obtain
a†αi

a†αk
= −a†αk

a†αi
(5)

Using the Pauli principle

|α1 . . . αi . . . αi . . . αn〉AS = 0 (6)

it follows that
a†αi

a†αi
= 0. (7)

If we combine Eqs. (??) and (??), we obtain the well-known anti-commutation
rule

a†αa
†
β + a†βa

†
α ≡ {a†α, a

†
β} = 0 (8)

The hermitian conjugate of a†α is

aα = (a†α)† (9)

If we take the hermitian conjugate of Eq. (??), we arrive at

{aα, aβ} = 0 (10)

What is the physical interpretation of the operator aα and what is the effect
of aα on a given state |α1α2 . . . αn〉AS? Consider the following matrix element

〈α1α2 . . . αn|aα|α′1α′2 . . . α′m〉 (11)

where both sides are antisymmetric. We distinguish between two cases. The
first (1) is when α ∈ {αi}. Using the Pauli principle of Eq. (??) it follows

〈α1α2 . . . αn|aα = 0 (12)

The second (2) case is when α /∈ {αi}. It follows that an hermitian conjugation

〈α1α2 . . . αn|aα = 〈αα1α2 . . . αn| (13)

Eq. (??) holds for case (1) since the lefthand side is zero due to the Pauli
principle. We write Eq. (??) as

〈α1α2 . . . αn|aα|α′1α′2 . . . α′m〉 = 〈α1α2 . . . αn|αα′1α′2 . . . α′m〉 (14)

Here we must have m = n+ 1 if Eq. (??) has to be trivially different from zero.
For the last case, the minus and plus signs apply when the sequence α, α1, α2, . . . , αn

and α′1, α′2, . . . , α′n+1 are related to each other via even and odd permutations.
If we assume that α /∈ {αi} we obtain

〈α1α2 . . . αn|aα|α′1α′2 . . . α′n+1〉 = 0 (15)

when α ∈ {α′i}. If α /∈ {α′i}, we obtain

aα |α′1α′2 . . . α′n+1︸ ︷︷ ︸〉 6=α = 0 (16)
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and in particular
aα|0〉 = 0 (17)

If {ααi} = {α′i}, performing the right permutations, the sequence α, α1, α2, . . . , αn
is identical with the sequence α′1, α′2, . . . , α′n+1. This results in

〈α1α2 . . . αn|aα|αα1α2 . . . αn〉 = 1 (18)

and thus
aα|αα1α2 . . . αn〉 = |α1α2 . . . αn〉 (19)

The action of the operator aα from the left on a state vector is to to remove
one particle in the state α. If the state vector does not contain the single-particle
state α, the outcome of the operation is zero. The operator aα is normally called
for a destruction or annihilation operator.

The next step is to establish the commutator algebra of a†α and aβ .
The action of the anti-commutator {a†α,aα} on a given n-particle state is

a†αaα |α1α2 . . . αn〉︸ ︷︷ ︸
6=α

= 0

aαa
†
α |α1α2 . . . αn〉︸ ︷︷ ︸

6=α

= aα |αα1α2 . . . αn〉︸ ︷︷ ︸
6=α

= |α1α2 . . . αn〉︸ ︷︷ ︸
6=α

(20)

if the single-particle state α is not contained in the state.
If it is present we arrive at

a†αaα|α1α2 . . . αkααk+1 . . . αn−1〉 = a†αaα(−1)k|αα1α2 . . . αn−1〉
= (−1)k|αα1α2 . . . αn−1〉 = |α1α2 . . . αkααk+1 . . . αn−1〉

aαa
†
α|α1α2 . . . αkααk+1 . . . αn−1〉 = 0 (21)

From Eqs. (??) and (??) we arrive at

{a†α, aα} = a†αaα + aαa
†
α = 1 (22)

The action of
{
a†α, aβ

}
, with α 6= β on a given state yields three possibilities.

The first case is a state vector which contains both α and β, then either α or β
and finally none of them.

The first case results in

a†αaβ |αβα1α2 . . . αn−2〉 = 0
aβa

†
α|αβα1α2 . . . αn−2〉 = 0 (23)

while the second case gives

a†αaβ |β α1α2 . . . αn−1︸ ︷︷ ︸
6=α

〉 = |αα1α2 . . . αn−1︸ ︷︷ ︸
6=α

〉

aβa
†
α|β α1α2 . . . αn−1︸ ︷︷ ︸

6=α

〉 = aβ |αβ βα1α2 . . . αn−1︸ ︷︷ ︸
6=α

〉

= −|αα1α2 . . . αn−1︸ ︷︷ ︸
6=α

〉 (24)
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Finally if the state vector does not contain α and β

a†αaβ |α1α2 . . . αn︸ ︷︷ ︸
6=α,β

〉 = 0

aβa
†
α|α1α2 . . . αn︸ ︷︷ ︸

6=α,β

〉 = aβ |αα1α2 . . . αn︸ ︷︷ ︸
6=α,β

〉 = 0 (25)

For all three cases we have

{a†α, aβ} = a†αaβ + aβa
†
α = 0, α 6= β (26)

We can summarize our findings in Eqs. (??) and (??) as

{a†α, aβ} = δαβ (27)

with δαβ is the Kroenecker δ-symbol.
The properties of the creation and annihilation operators can be summarized

as (for fermions)
a†α|0〉 ≡ |α〉,

and
a†α|α1 . . . αn〉AS ≡ |αα1 . . . αn〉AS.

from which follows

|α1 . . . αn〉AS = a†α1
a†α2

. . . a†αn
|0〉.

The hermitian conjugate has the folowing properties

aα = (a†α)†.

Finally we found

aα |α′1α′2 . . . α′n+1︸ ︷︷ ︸〉6=α = 0, in particular aα|0〉 = 0,

and
aα|αα1α2 . . . αn〉 = |α1α2 . . . αn〉,

and the corresponding commutator algebra

{a†α, a
†
β} = {aα, aβ} = 0 {a†α, aβ} = δαβ .

One-body operators in second quantization
A very useful operator is the so-called number-operator. Most physics cases
we will study in this text conserve the total number of particles. The number
operator is therefore a useful quantity which allows us to test that our many-
body formalism conserves the number of particles. In for example (d, p) or (p, d)
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reactions it is important to be able to describe quantum mechanical states where
particles get added or removed. A creation operator a†α adds one particle to the
single-particle state α of a give many-body state vector, while an annihilation
operator aα removes a particle from a single-particle state α.

Let us consider an operator proportional with a†αaβ and α = β. It acts on
an n-particle state resulting in

a†αaα|α1α2 . . . αn〉 =


0 α /∈ {αi}

|α1α2 . . . αn〉 α ∈ {αi}
(28)

Summing over all possible one-particle states we arrive at(∑
α

a†αaα

)
|α1α2 . . . αn〉 = n|α1α2 . . . αn〉 (29)

The operator
N̂ =

∑
α

a†αaα (30)

is called the number operator since it counts the number of particles in a give
state vector when it acts on the different single-particle states. It acts on one
single-particle state at the time and falls therefore under category one-body
operators. Next we look at another important one-body operator, namely Ĥ0
and study its operator form in the occupation number representation.

We want to obtain an expression for a one-body operator which conserves
the number of particles. Here we study the one-body operator for the kinetic
energy plus an eventual external one-body potential. The action of this operator
on a particular n-body state with its pertinent expectation value has already
been studied in coordinate space. In coordinate space the operator reads

Ĥ0 =
∑
i

ĥ0(xi) (31)

and the anti-symmetric n-particle Slater determinant is defined as

Φ(x1, x2, . . . , xn, α1, α2, . . . , αn) = 1√
n!

∑
p

(−1)pP̂ψα1(x1)ψα2(x2) . . . ψαn
(xn).

Defining
ĥ0(xi)ψαi

(xi) =
∑
α′

k

ψα′
k
(xi)〈α′k|ĥ0|αk〉 (32)

we can easily evaluate the action of Ĥ0 on each product of one-particle functions
in Slater determinant. From Eq. (??) we obtain the following result without
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permuting any particle pair(∑
i

ĥ0(xi)
)
ψα1(x1)ψα2(x2) . . . ψαn

(xn)

=
∑
α′1

〈α′1|ĥ0|α1〉ψα′1(x1)ψα2(x2) . . . ψαn(xn)

+
∑
α′2

〈α′2|ĥ0|α2〉ψα1(x1)ψα′2(x2) . . . ψαn
(xn)

+ . . .

+
∑
α′n

〈α′n|ĥ0|αn〉ψα1(x1)ψα2(x2) . . . ψα′n(xn) (33)

If we interchange particles 1 and 2 we obtain(∑
i

ĥ0(xi)
)
ψα1(x2)ψα1(x2) . . . ψαn

(xn)

=
∑
α′2

〈α′2|ĥ0|α2〉ψα1(x2)ψα′2(x1) . . . ψαn(xn)

+
∑
α′1

〈α′1|ĥ0|α1〉ψα′1(x2)ψα2(x1) . . . ψαn
(xn)

+ . . .

+
∑
α′n

〈α′n|ĥ0|αn〉ψα1(x2)ψα1(x2) . . . ψα′n(xn) (34)

We can continue by computing all possible permutations. We rewrite also
our Slater determinant in its second quantized form and skip the dependence on
the quantum numbers xi. Summing up all contributions and taking care of all
phases (−1)p we arrive at

Ĥ0|α1, α2, . . . , αn〉 =
∑
α′1

〈α′1|ĥ0|α1〉|α′1α2 . . . αn〉

+
∑
α′2

〈α′2|ĥ0|α2〉|α1α
′
2 . . . αn〉

+ . . .

+
∑
α′n

〈α′n|ĥ0|αn〉|α1α2 . . . α
′
n〉 (35)

In Eq. (??) we have expressed the action of the one-body operator of Eq. (??)
on the n-body state in its second quantized form. This equation can be further
manipulated if we use the properties of the creation and annihilation operator
on each primed quantum number, that is

|α1α2 . . . α
′
k . . . αn〉 = a†α′

k
aαk
|α1α2 . . . αk . . . αn〉 (36)
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Inserting this in the right-hand side of Eq. (??) results in

Ĥ0|α1α2 . . . αn〉 =
∑
α′1

〈α′1|ĥ0|α1〉a†α′1aα1 |α1α2 . . . αn〉

+
∑
α′2

〈α′2|ĥ0|α2〉a†α′2aα2 |α1α2 . . . αn〉

+ . . .

+
∑
α′n

〈α′n|ĥ0|αn〉a†α′naαn
|α1α2 . . . αn〉

=
∑
α,β

〈α|ĥ0|β〉a†αaβ |α1α2 . . . αn〉 (37)

In the number occupation representation or second quantization we get the
following expression for a one-body operator which conserves the number of
particles

Ĥ0 =
∑
αβ

〈α|ĥ0|β〉a†αaβ (38)

Obviously, Ĥ0 can be replaced by any other one-body operator which preserved
the number of particles. The stucture of the operator is therefore not limited to
say the kinetic or single-particle energy only.

The opearator Ĥ0 takes a particle from the single-particle state β to the single-
particle state α with a probability for the transition given by the expectation
value 〈α|ĥ0|β〉.

It is instructive to verify Eq. (??) by computing the expectation value of Ĥ0
between two single-particle states

〈α1|ĥ0|α2〉 =
∑
αβ

〈α|ĥ0|β〉〈0|aα1a
†
αaβa

†
α2
|0〉 (39)

Using the commutation relations for the creation and annihilation operators
we have

aα1a
†
αaβa

†
α2

= (δαα1 − a†αaα1)(δβα2 − a†α2
aβ), (40)

which results in
〈0|aα1a

†
αaβa

†
α2
|0〉 = δαα1δβα2 (41)

and
〈α1|ĥ0|α2〉 =

∑
αβ

〈α|ĥ0|β〉δαα1δβα2 = 〈α1|ĥ0|α2〉 (42)

Two-body operators in second quantization
Let us now derive the expression for our two-body interaction part, which also
conserves the number of particles. We can proceed in exactly the same way
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as for the one-body operator. In the coordinate representation our two-body
interaction part takes the following expression

ĤI =
∑
i<j

V (xi, xj) (43)

where the summation runs over distinct pairs. The term V can be an interaction
model for the nucleon-nucleon interaction or the interaction between two electrons.
It can also include additional two-body interaction terms.

The action of this operator on a product of two single-particle functions is
defined as

V (xi, xj)ψαk
(xi)ψαl

(xj) =
∑
α′

k
α′

l

ψ′αk
(xi)ψ′αl

(xj)〈α′kα′l|v̂|αkαl〉 (44)

We can now let ĤI act on all terms in the linear combination for |α1α2 . . . αn〉.
Without any permutations we have∑

i<j

V (xi, xj)

ψα1(x1)ψα2(x2) . . . ψαn(xn)

=
∑
α′1α

′
2

〈α′1α′2|v̂|α1α2〉ψ′α1
(x1)ψ′α2

(x2) . . . ψαn
(xn)

+ . . .

+
∑
α′1α

′
n

〈α′1α′n|v̂|α1αn〉ψ′α1
(x1)ψα2(x2) . . . ψ′αn

(xn)

+ . . .

+
∑
α′2α

′
n

〈α′2α′n|v̂|α2αn〉ψα1(x1)ψ′α2
(x2) . . . ψ′αn

(xn)

+ . . . (45)

where on the rhs we have a term for each distinct pairs.
For the other terms on the rhs we obtain similar expressions and summing

over all terms we obtain

HI |α1α2 . . . αn〉 =
∑
α′1,α

′
2

〈α′1α′2|v̂|α1α2〉|α′1α′2 . . . αn〉

+ . . .

+
∑
α′1,α

′
n

〈α′1α′n|v̂|α1αn〉|α′1α2 . . . α
′
n〉

+ . . .

+
∑
α′2,α

′
n

〈α′2α′n|v̂|α2αn〉|α1α
′
2 . . . α

′
n〉

+ . . . (46)
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We introduce second quantization via the relation

a†α′
k
a†α′

l
aαl

aαk
|α1α2 . . . αk . . . αl . . . αn〉

= (−1)k−1(−1)l−2a†α′
k
a†α′

l
aαl

aαk
|αkαl α1α2 . . . αn︸ ︷︷ ︸

6=αk,αl

〉

= (−1)k−1(−1)l−2|α′kα′l α1α2 . . . αn︸ ︷︷ ︸
6=α′

k
,α′

l

〉

= |α1α2 . . . α
′
k . . . α

′
l . . . αn〉 (47)

Inserting this in (??) gives

HI |α1α2 . . . αn〉 =
∑
α′1,α

′
2

〈α′1α′2|v̂|α1α2〉a†α′1a
†
α′2
aα2aα1 |α1α2 . . . αn〉

+ . . .

=
∑
α′1,α

′
n

〈α′1α′n|v̂|α1αn〉a†α′1a
†
α′n
aαn

aα1 |α1α2 . . . αn〉

+ . . .

=
∑
α′2,α

′
n

〈α′2α′n|v̂|α2αn〉a†α′2a
†
α′n
aαn

aα2 |α1α2 . . . αn〉

+ . . .

=
′∑

α,β,γ,δ

〈αβ|v̂|γδ〉a†αa
†
βaδaγ |α1α2 . . . αn〉 (48)

Here we let
∑′ indicate that the sums running over α and β run over all single-

particle states, while the summations γ and δ run over all pairs of single-particle
states. We wish to remove this restriction and since

〈αβ|v̂|γδ〉 = 〈βα|v̂|δγ〉 (49)

we get ∑
αβ

〈αβ|v̂|γδ〉a†αa
†
βaδaγ =

∑
αβ

〈βα|v̂|δγ〉a†αa
†
βaδaγ (50)

=
∑
αβ

〈βα|v̂|δγ〉a†βa
†
αaγaδ (51)

where we have used the anti-commutation rules.
Changing the summation indices α and β in (??) we obtain∑

αβ

〈αβ|v̂|γδ〉a†αa
†
βaδaγ =

∑
αβ

〈αβ|v̂|δγ〉a†αa
†
βaγaδ (52)

From this it follows that the restriction on the summation over γ and δ can be
removed if we multiply with a factor 1

2 , resulting in

ĤI = 1
2
∑
αβγδ

〈αβ|v̂|γδ〉a†αa
†
βaδaγ (53)
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where we sum freely over all single-particle states α, β, γ og δ.
With this expression we can now verify that the second quantization form

of ĤI in Eq. (??) results in the same matrix between two anti-symmetrized
two-particle states as its corresponding coordinate space representation. We
have

〈α1α2|ĤI |β1β2〉 = 1
2
∑
αβγδ

〈αβ|v̂|γδ〉〈0|aα2aα1a
†
αa
†
βaδaγa

†
β1
a†β2
|0〉. (54)

Using the commutation relations we get

aα2aα1a
†
αa
†
βaδaγa

†
β1
a†β2

= aα2aα1a
†
αa
†
β(aδδγβ1a

†
β2
− aδa†β1

aγa
†
β2

)

= aα2aα1a
†
αa
†
β(δγβ1δδβ2 − δγβ1a

†
β2
aδ − aδa†β1

δγβ2 + aδa
†
β1
a†β2

aγ)

= aα2aα1a
†
αa
†
β(δγβ1δδβ2 − δγβ1a

†
β2
aδ

−δδβ1δγβ2 + δγβ2a
†
β1
aδ + aδa

†
β1
a†β2

aγ) (55)

The vacuum expectation value of this product of operators becomes

〈0|aα2aα1a
†
αa
†
βaδaγa

†
β1
a†β2
|0〉

= (δγβ1δδβ2 − δδβ1δγβ2)〈0|aα2aα1a
†
αa
†
β |0〉

= (δγβ1δδβ2 − δδβ1δγβ2)(δαα1δβα2 − δβα1δαα2) (56)

Insertion of Eq. (??) in Eq. (??) results in

〈α1α2|ĤI |β1β2〉 = 1
2
[
〈α1α2|v̂|β1β2〉 − 〈α1α2|v̂|β2β1〉

−〈α2α1|v̂|β1β2〉+ 〈α2α1|v̂|β2β1〉
]

= 〈α1α2|v̂|β1β2〉 − 〈α1α2|v̂|β2β1〉
= 〈α1α2|v̂|β1β2〉AS. (57)

The two-body operator can also be expressed in terms of the anti-symmetrized
matrix elements we discussed previously as

ĤI = 1
2
∑
αβγδ

〈αβ|v̂|γδ〉a†αa
†
βaδaγ

= 1
4
∑
αβγδ

[〈αβ|v̂|γδ〉 − 〈αβ|v̂|δγ〉] a†αa
†
βaδaγ

= 1
4
∑
αβγδ

〈αβ|v̂|γδ〉ASa
†
αa
†
βaδaγ (58)

The factors in front of the operator, either 1
4 or 1

2 tells whether we use
antisymmetrized matrix elements or not.
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We can now express the Hamiltonian operator for a many-fermion system in
the occupation basis representation as

H =
∑
α,β

〈α|t̂+ ûext|β〉a†αaβ + 1
4
∑
αβγδ

〈αβ|v̂|γδ〉a†αa
†
βaδaγ . (59)

This is the form we will use in the rest of these lectures, assuming that we work
with anti-symmetrized two-body matrix elements.

Particle-hole formalism
Second quantization is a useful and elegant formalism for constructing many-body
states and quantum mechanical operators. One can express and translate many
physical processes into simple pictures such as Feynman diagrams. Expecation
values of many-body states are also easily calculated. However, although the
equations are seemingly easy to set up, from a practical point of view, that is the
solution of Schroedinger’s equation, there is no particular gain. The many-body
equation is equally hard to solve, irrespective of representation. The cliche
that there is no free lunch brings us down to earth again. Note however that
a transformation to a particular basis, for cases where the interaction obeys
specific symmetries, can ease the solution of Schroedinger’s equation.

But there is at least one important case where second quantization comes
to our rescue. It is namely easy to introduce another reference state than the
pure vacuum |0〉, where all single-particle states are active. With many particles
present it is often useful to introduce another reference state than the vacuum
state|0〉. We will label this state |c〉 (c for core) and as we will see it can reduce
considerably the complexity and thereby the dimensionality of the many-body
problem. It allows us to sum up to infinite order specific many-body correlations.
The particle-hole representation is one of these handy representations.

In the original particle representation these states are products of the creation
operators a†αi

acting on the true vacuum |0〉. Following Eq. (??) we have

|α1α2 . . . αn−1αn〉 = a†α1
a†α2

. . . a†αn−1
a†αn
|0〉 (60)

|α1α2 . . . αn−1αnαn+1〉 = a†α1
a†α2

. . . a†αn−1
a†αn

a†αn+1
|0〉 (61)

|α1α2 . . . αn−1〉 = a†α1
a†α2

. . . a†αn−1
|0〉 (62)

If we use Eq. (??) as our new reference state, we can simplify considerably
the representation of this state

|c〉 ≡ |α1α2 . . . αn−1αn〉 = a†α1
a†α2

. . . a†αn−1
a†αn
|0〉 (63)

The new reference states for the n+ 1 and n− 1 states can then be written as

|α1α2 . . . αn−1αnαn+1〉 = (−1)na†αn+1
|c〉 ≡ (−1)n|αn+1〉c (64)

|α1α2 . . . αn−1〉 = (−1)n−1aαn
|c〉 ≡ (−1)n−1|αn−1〉c (65)
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The first state has one additional particle with respect to the new vacuum
state |c〉 and is normally referred to as a one-particle state or one particle added
to the many-body reference state. The second state has one particle less than the
reference vacuum state |c〉 and is referred to as a one-hole state. When dealing
with a new reference state it is often convenient to introduce new creation and
annihilation operators since we have from Eq. (??)

aα|c〉 6= 0 (66)

since α is contained in |c〉, while for the true vacuum we have aα|0〉 = 0 for all α.
The new reference state leads to the definition of new creation and annihilation

operators which satisfy the following relations

bα|c〉 = 0 (67)
{b†α, b

†
β} = {bα, bβ} = 0

{b†α, bβ} = δαβ (68)

We assume also that the new reference state is properly normalized

〈c|c〉 = 1 (69)

The physical interpretation of these new operators is that of so-called quasi-
particle states. This means that a state defined by the addition of one extra
particle to a reference state |c〉 may not necesseraly be interpreted as one particle
coupled to a core. We define now new creation operators that act on a state α
creating a new quasiparticle state

b†α|c〉 =
{

a†α|c〉 = |α〉, α > F

aα|c〉 = |α−1〉, α ≤ F
(70)

where F is the Fermi level representing the last occupied single-particle orbit of
the new reference state |c〉.

The annihilation is the hermitian conjugate of the creation operator

bα = (b†α)†,

resulting in

b†α =
{

a†α α > F

aα α ≤ F
bα =

{ aα α > F

a†α α ≤ F
(71)

With the new creation and annihilation operator we can now construct many-
body quasiparticle states, with one-particle-one-hole states, two-particle-two-hole
states etc in the same fashion as we previously constructed many-particle states.
We can write a general particle-hole state as

|β1β2 . . . βnp
γ−1

1 γ−1
2 . . . γ−1

nh
〉 ≡ b†β1

b†β2
. . . b†βnp︸ ︷︷ ︸
>F

b†γ1
b†γ2

. . . b†γnh︸ ︷︷ ︸
≤F

|c〉 (72)
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We can now rewrite our one-body and two-body operators in terms of the new
creation and annihilation operators. The number operator becomes

N̂ =
∑
α

a†αaα =
∑
α>F

b†αbα + nc −
∑
α≤F

b†αbα (73)

where nc is the number of particle in the new vacuum state |c〉. The action of
N̂ on a many-body state results in

N |β1β2 . . . βnp
γ−1

1 γ−1
2 . . . γ−1

nh
〉 = (np + nc − nh)|β1β2 . . . βnp

γ−1
1 γ−1

2 . . . γ−1
nh
〉

(74)
Here n = np + nc − nh is the total number of particles in the quasi-particle state
of Eq. (??). Note that N̂ counts the total number of particles present

Nqp =
∑
α

b†αbα, (75)

gives us the number of quasi-particles as can be seen by computing

Nqp = |β1β2 . . . βnp
γ−1

1 γ−1
2 . . . γ−1

nh
〉 = (np + nh)|β1β2 . . . βnp

γ−1
1 γ−1

2 . . . γ−1
nh
〉

(76)
where nqp = np + nh is the total number of quasi-particles.

We express the one-body operator Ĥ0 in terms of the quasi-particle creation
and annihilation operators, resulting in

Ĥ0 =
∑
αβ>F

〈α|ĥ0|β〉b†αbβ +
∑

α > F
β ≤ F

[
〈α|ĥ0|β〉b†αb

†
β + 〈β|ĥ0|α〉bβbα

]

+
∑
α≤F

〈α|ĥ0|α〉 −
∑
αβ≤F

〈β|ĥ0|α〉b†αbβ (77)

The first term gives contribution only for particle states, while the last one
contributes only for holestates. The second term can create or destroy a set of
quasi-particles and the third term is the contribution from the vacuum state |c〉.

Before we continue with the expressions for the two-body operator, we
introduce a nomenclature we will use for the rest of this text. It is inspired by
the notation used in quantum chemistry. We reserve the labels i, j, k, . . . for
hole states and a, b, c, . . . for states above F , viz. particle states. This means
also that we will skip the constraint ≤ F or > F in the summation symbols.
Our operator Ĥ0 reads now

Ĥ0 =
∑
ab

〈a|ĥ|b〉b†abb +
∑
ai

[
〈a|ĥ|i〉b†ab

†
i + 〈i|ĥ|a〉biba

]
+

∑
i

〈i|ĥ|i〉 −
∑
ij

〈j|ĥ|i〉b†i bj (78)

The two-particle operator in the particle-hole formalism is more complicated
since we have to translate four indices αβγδ to the possible combinations of
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particle and hole states. When performing the commutator algebra we can
regroup the operator in five different terms

ĤI = Ĥ
(a)
I + Ĥ

(b)
I + Ĥ

(c)
I + Ĥ

(d)
I + Ĥ

(e)
I (79)

Using anti-symmetrized matrix elements, bthe term Ĥ
(a)
I is

Ĥ
(a)
I = 1

4
∑
abcd

〈ab|V̂ |cd〉b†ab
†
bbdbc (80)

The next term Ĥ
(b)
I reads

Ĥ
(b)
I = 1

4
∑
abci

(
〈ab|V̂ |ci〉b†ab

†
bb
†
i bc + 〈ai|V̂ |cb〉b†abibbbc

)
(81)

This term conserves the number of quasiparticles but creates or removes a
three-particle-one-hole state. For Ĥ(c)

I we have

Ĥ
(c)
I = 1

4
∑
abij

(
〈ab|V̂ |ij〉b†ab

†
bb
†
jb
†
i + 〈ij|V̂ |ab〉babbbjbi

)
+

1
2
∑
abij

〈ai|V̂ |bj〉b†ab
†
jbbbi + 1

2
∑
abi

〈ai|V̂ |bi〉b†abb. (82)

The first line stands for the creation of a two-particle-two-hole state, while
the second line represents the creation to two one-particle-one-hole pairs while
the last term represents a contribution to the particle single-particle energy from
the hole states, that is an interaction between the particle states and the hole
states within the new vacuum state. The fourth term reads

Ĥ
(d)
I = 1

4
∑
aijk

(
〈ai|V̂ |jk〉b†ab

†
kb
†
jbi + 〈ji|V̂ |ak〉b†kbjbiba

)
+

1
4
∑
aij

(
〈ai|V̂ |ji〉b†ab

†
j + 〈ji|V̂ |ai〉 − 〈ji|V̂ |ia〉bjba

)
. (83)

The terms in the first line stand for the creation of a particle-hole state interacting
with hole states, we will label this as a two-hole-one-particle contribution. The
remaining terms are a particle-hole state interacting with the holes in the vacuum
state. Finally we have

Ĥ
(e)
I = 1

4
∑
ijkl

〈kl|V̂ |ij〉b†i b
†
jblbk + 1

2
∑
ijk

〈ij|V̂ |kj〉b†kbi + 1
2
∑
ij

〈ij|V̂ |ij〉 (84)

The first terms represents the interaction between two holes while the second
stands for the interaction between a hole and the remaining holes in the vacuum
state. It represents a contribution to single-hole energy to first order. The last
term collects all contributions to the energy of the ground state of a closed-shell
system arising from hole-hole correlations.
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Summarizing and defining a normal-ordered Hamil-
tonian

ΦAS(α1, . . . , αA;x1, . . . xA) = 1√
A

∑
P̂

(−1)P P̂
A∏
i=1

ψαi
(xi),

which is equivalent with |α1 . . . αA〉 = a†α1
. . . a†αA

|0〉. We have also

a†p|0〉 = |p〉, ap|q〉 = δpq|0〉

δpq =
{
ap, a

†
q

}
,

and
0 =

{
a†p, aq

}
= {ap, aq} =

{
a†p, a

†
q

}
|Φ0〉 = |α1 . . . αA〉, α1, . . . , αA ≤ αF

{
a†p, aq

}
= δpq, p, q ≤ αF{

ap, a
†
q

}
= δpq, p, q > αF

with i, j, . . . ≤ αF , a, b, . . . > αF , p, q, . . .− any

ai|Φ0〉 = |Φi〉, a†a|Φ0〉 = |Φa〉

and
a†i |Φ0〉 = 0 aa|Φ0〉 = 0

The one-body operator is defined as

F̂ =
∑
pq

〈p|f̂ |q〉a†paq

while the two-body opreator is defined as

V̂ = 1
4
∑
pqrs

〈pq|v̂|rs〉ASa†pa†qasar

where we have defined the antisymmetric matrix elements

〈pq|v̂|rs〉AS = 〈pq|v̂|rs〉 − 〈pq|v̂|sr〉.

We can also define a three-body operator

V̂3 = 1
36

∑
pqrstu

〈pqr|v̂3|stu〉ASa†pa†qa†rauatas

with the antisymmetrized matrix element

〈pqr|v̂3|stu〉AS = 〈pqr|v̂3|stu〉+ 〈pqr|v̂3|tus〉+ 〈pqr|v̂3|ust〉 − 〈pqr|v̂3|sut〉 − 〈pqr|v̂3|tsu〉 − 〈pqr|v̂3|uts〉.
(85)
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Hartree-Fock in second quantization and stability
of HF solution
We wish now to derive the Hartree-Fock equations using our second-quantized
formalism and study the stability of the equations. Our ansatz for the ground
state of the system is approximated as (this is our representation of a Slater
determinant in second quantization)

|Φ0〉 = |c〉 = a†ia
†
j . . . a

†
l |0〉.

We wish to determine ûHF so that EHF0 = 〈c|Ĥ|c〉 becomes a local minimum.
In our analysis here we will need Thouless’ theorem, which states that an

arbitrary Slater determinant |c′〉 which is not orthogonal to a determinant

|c〉 =
n∏
i=1
a†αi
|0〉, can be written as

|c′〉 = exp

∑
a>F

∑
i≤F

Caia
†
aai

 |c〉
Let us give a simple proof of Thouless’ theorem. The theorem states that

we can make a linear combination av particle-hole excitations with respect to
a given reference state |c〉. With this linear combination, we can make a new
Slater determinant |c′〉 which is not orthogonal to |c〉, that is

〈c|c′〉 6= 0.

To show this we need some intermediate steps. The exponential product of
two operators exp Â× exp B̂ is equal to exp (Â+ B̂) only if the two operators
commute, that is

[Â, B̂] = 0.

Thouless’ theorem
If the operators do not commute, we need to resort to the Baker-Campbell-
Hauersdorf. This relation states that

exp Ĉ = exp Â exp B̂,

with
Ĉ = Â+ B̂ + 1

2[Â, B̂] + 1
12 [[Â, B̂], B̂]− 1

12 [[Â, B̂], Â] + . . .

From these relations, we note that in our expression for |c′〉 we have commutators
of the type

[a†aai, a
†
baj ],

16

http://www.encyclopediaofmath.org/index.php/Campbell%E2%80%93Hausdorff_formula
http://www.encyclopediaofmath.org/index.php/Campbell%E2%80%93Hausdorff_formula


and it is easy to convince oneself that these commutators, or higher powers
thereof, are all zero. This means that we can write out our new representation
of a Slater determinant as

|c′〉 = exp

∑
a>F

∑
i≤F

Caia
†
aai

 |c〉 =
∏
i

1 +
∑
a>F

Caia
†
aai +

(∑
a>F

Caia
†
aai

)2

+ . . .

 |c〉
We note that ∏

i

∑
a>F

Caia
†
aai

∑
b>F

Cbia
†
bai|c〉 = 0,

and all higher-order powers of these combinations of creation and annihilation
operators disappear due to the fact that (ai)n|c〉 = 0 when n > 1. This allows
us to rewrite the expression for |c′〉 as

|c′〉 =
∏
i

{
1 +

∑
a>F

Caia
†
aai

}
|c〉,

which we can rewrite as

|c′〉 =
∏
i

{
1 +

∑
a>F

Caia
†
aai

}
|a†i1a

†
i2
. . . a†in |0〉.

The last equation can be written as

|c′〉 =
∏
i

{
1 +

∑
a>F

Caia
†
aai

}
|a†i1a

†
i2
. . . a†in |0〉 =

(
1 +

∑
a>F

Cai1a
†
aai1

)
a†i1 (86)

×

(
1 +

∑
a>F

Cai2a
†
aai2

)
a†i2 . . . |0〉 =

∏
i

(
a†i +

∑
a>F

Caia
†
a

)
|0〉. (87)

New operators
If we define a new creation operator

b†i = a†i +
∑
a>F

Caia
†
a, (88)

we have

|c′〉 =
∏
i

b†i |0〉 =
∏
i

(
a†i +

∑
a>F

Caia
†
a

)
|0〉,

meaning that the new representation of the Slater determinant in second quan-
tization, |c′〉, looks like our previous ones. However, this representation is not
general enough since we have a restriction on the sum over single-particle states
in Eq. (??). The single-particle states have all to be above the Fermi level. The
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question then is whether we can construct a general representation of a Slater
determinant with a creation operator

b̃†i =
∑
p

fipa
†
p,

where fip is a matrix element of a unitary matrix which transforms our creation
and annihilation operators a† and a to b̃† and b̃. These new operators define a
new representation of a Slater determinant as

|c̃〉 =
∏
i

b̃†i |0〉.

Showing that |c̃〉 = |c′〉
We need to show that |c̃〉 = |c′〉. We need also to assume that the new state is
not orthogonal to |c〉, that is 〈c|c̃〉 6= 0. From this it follows that

〈c|c̃〉 = 〈0|ain . . . ai1

 in∑
p=i1

fi1pa
†
p

 in∑
q=i1

fi2qa
†
q

 . . .

(
in∑
t=i1

finta
†
t

)
|0〉,

which is nothing but the determinant det(fip) which we can, using the interme-
diate normalization condition, normalize to one, that is

det(fip) = 1,

meaning that f has an inverse defined as (since we are dealing with orthogonal,
and in our case unitary as well, transformations)∑

k

fikf
−1
kj = δij ,

and ∑
j

f−1
ij fjk = δik.

Using these relations we can then define the linear combination of creation
(and annihilation as well) operators as∑

i

f−1
ki b̃

†
i =

∑
i

f−1
ki

∞∑
p=i1

fipa
†
p = a†k +

∑
i

∞∑
p=in+1

f−1
ki fipa

†
p.

Defining
ckp =

∑
i≤F

f−1
ki fip,

we can redefine

a†k +
∑
i

∞∑
p=in+1

f−1
ki fipa

†
p = a†k +

∞∑
p=in+1

ckpa
†
p = b†k,
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our starting point. We have shown that our general representation of a Slater
determinant

|c̃〉 =
∏
i

b̃†i |0〉 = |c′〉 =
∏
i

b†i |0〉,

with

b†k = a†k +
∞∑

p=in+1

ckpa
†
p.

This means that we can actually write an ansatz for the ground state of the
system as a linear combination of terms which contain the ansatz itself |c〉 with
an admixture from an infinity of one-particle-one-hole states. The latter has
important consequences when we wish to interpret the Hartree-Fock equations
and their stability. We can rewrite the new representation as

|c′〉 = |c〉+ |δc〉,

where |δc〉 can now be interpreted as a small variation. If we approximate this
term with contributions from one-particle-one-hole (1p-1h) states only, we arrive
at

|c′〉 =
(

1 +
∑
ai

δCaia
†
aai

)
|c〉.

In our derivation of the Hartree-Fock equations we have shown that

〈δc|Ĥ|c〉 = 0,

which means that we have to satisfy

〈c|
∑
ai

δCai
{
a†aai

}
Ĥ|c〉 = 0.

With this as a background, we are now ready to study the stability of the
Hartree-Fock equations.

Hartree-Fock in second quantization and stability of HF
solution
The variational condition for deriving the Hartree-Fock equations guarantees
only that the expectation value 〈c|Ĥ|c〉 has an extreme value, not necessarily a
minimum. To figure out whether the extreme value we have found is a minimum,
we can use second quantization to analyze our results and find a criterion for
the above expectation value to a local minimum. We will use Thouless’ theorem
and show that

〈c′|Ĥ|c′〉
〈c′|c′〉

≥ 〈c|Ĥ|c〉 = E0,

with
|c′〉 = |c〉+ |δc〉.
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Using Thouless’ theorem we can write out |c′〉 as

|c′〉 = exp

∑
a>F

∑
i≤F

δCaia
†
aai

 |c〉 (89)

=

1 +
∑
a>F

∑
i≤F

δCaia
†
aai + 1

2!
∑
ab>F

∑
ij≤F

δCaiδCbja
†
aaia

†
baj + . . .

 (90)

where the amplitudes δC are small.
The norm of |c′〉 is given by (using the intermediate normalization condition

〈c′|c〉 = 1)
〈c′|c′〉 = 1 +

∑
a>F

∑
i≤F

|δCai|2 +O(δC3
ai).

The expectation value for the energy is now given by (using the Hartree-Fock
condition)

〈c′|Ĥ|c′〉 = 〈c|Ĥ|c〉+
∑
ab>F

∑
ij≤F

δC∗aiδCbj〈c|a
†
iaaĤa

†
baj |c〉+

1
2!
∑
ab>F

∑
ij≤F

δCaiδCbj〈c|Ĥa†aaia
†
baj |c〉+

1
2!
∑
ab>F

∑
ij≤F

δC∗aiδC
∗
bj〈c|a

†
jaba

†
iaaĤ|c〉+. . .

We have already calculated the second term on the right-hand side of the
previous equation

〈c|
(
{a†iaa}Ĥ{a

†
baj}

)
|c〉 =

∑
pq

∑
ijab

δC∗aiδCbj〈p|ĥ0|q〉〈c|
(
{a†iaa}{a

†
paq}{a

†
baj}

)
|c〉

(91)

+ 1
4
∑
pqrs

∑
ijab

δC∗aiδCbj〈pq|v̂|rs〉〈c|
(
{a†iaa}{a

†
pa
†
qasar}{a

†
baj}

)
|c〉,

(92)

resulting in

E0
∑
ai

|δCai|2 +
∑
ai

|δCai|2(εa − εi)−
∑
ijab

〈aj|v̂|bi〉δC∗aiδCbj .

1
2! 〈c|

(
{a†jab}{a

†
iaa}V̂N

)
|c〉 = 1

2! 〈c|
(
V̂N{a†aai}{a

†
baj}

)†
|c〉

which is nothing but

1
2! 〈c|

(
V̂N{a†aai}{a

†
baj}

)
|c〉∗ = 1

2
∑
ijab

(〈ij|v̂|ab〉)∗δC∗aiδC∗bj
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or
1
2
∑
ijab

(〈ab|v̂|ij〉)δC∗aiδC∗bj

where we have used the relation

〈a|Â|b〉 = (〈b|Â†|a〉)∗

due to the hermiticity of Ĥ and V̂ .
We define two matrix elements

Aai,bj = −〈aj|v̂bi〉

and
Bai,bj = 〈ab|v̂|ij〉

both being anti-symmetrized.
With these definitions we write out the energy as

〈c′|H|c′〉 =
(

1 +
∑
ai

|δCai|2
)
〈c|H|c〉+

∑
ai

|δCai|2(εHFa − εHFi ) +
∑
ijab

Aai,bjδC
∗
aiδCbj+

(93)
1
2
∑
ijab

B∗ai,bjδCaiδCbj + 1
2
∑
ijab

Bai,bjδC
∗
aiδC

∗
bj +O(δC3

ai), (94)

which can be rewritten as

〈c′|H|c′〉 =
(

1 +
∑
ai

|δCai|2
)
〈c|H|c〉+ ∆E +O(δC3

ai),

and skipping higher-order terms we arrived

〈c′|Ĥ|c′〉
〈c′|c′〉

= E0 + ∆E
(1 +

∑
ai |δCai|2) .

We have defined
∆E = 1

2 〈χ|M̂ |χ〉

with the vectors
χ = [δC δC∗]T

and the matrix
M̂ =

(
∆ +A B
B∗ ∆ +A∗

)
,

with ∆ai,bj = (εa − εi)δabδij .
The condition

∆E = 1
2 〈χ|M̂ |χ〉 ≥ 0
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for an arbitrary vector
χ = [δC δC∗]T

means that all eigenvalues of the matrix have to be larger than or equal zero. A
necessary (but no sufficient) condition is that the matrix elements (for all ai )

(εa − εi)δabδij +Aai,bj ≥ 0.

This equation can be used as a first test of the stability of the Hartree-Fock
equation.

Operators in second quantization
In the build-up of a shell-model or FCI code that is meant to tackle large
dimensionalities is the action of the Hamiltonian Ĥ on a Slater determinant
represented in second quantization as

|α1 . . . αn〉 = a†α1
a†α2

. . . a†αn
|0〉.

The time consuming part stems from the action of the Hamiltonian on the above
determinant,∑

αβ

〈α|t+ u|β〉a†αaβ + 1
4
∑
αβγδ

〈αβ|v̂|γδ〉a†αa
†
βaδaγ

 a†α1
a†α2

. . . a†αn
|0〉.

A practically useful way to implement this action is to encode a Slater determinant
as a bit pattern.

Assume that we have at our disposal n different single-particle orbits α0, α2, . . . , αn−1
and that we can distribute among these orbits N ≤ n particles.

A Slater determinant can then be coded as an integer of n bits. As an
example, if we have n = 16 single-particle states α0, α1, . . . , α15 and N = 4
fermions occupying the states α3, α6, α10 and α13 we could write this Slater
determinant as

ΦΛ = a†α3
a†α6

a†α10
a†α13
|0〉.

The unoccupied single-particle states have bit value 0 while the occupied ones
are represented by bit state 1. In the binary notation we would write this 16
bits long integer as

α0 α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 α11 α12 α13 α14 α15
0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0

which translates into the decimal number

23 + 26 + 210 + 213 = 9288.

We can thus encode a Slater determinant as a bit pattern.
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With N particles that can be distributed over n single-particle states, the
total number of Slater determinats (and defining thereby the dimensionality of
the system) is

dim(H) =
(

n
N

)
.

The total number of bit patterns is 2n.
We assume again that we have at our disposal n different single-particle

orbits α0, α2, . . . , αn−1 and that we can distribute among these orbits N ≤ n
particles. The ordering among these states is important as it defines the order
of the creation operators. We will write the determinant

ΦΛ = a†α3
a†α6

a†α10
a†α13
|0〉,

in a more compact way as

Φ3,6,10,13 = |0001001000100100〉.

The action of a creation operator is thus

a†α4
Φ3,6,10,13 = a†α4

|0001001000100100〉 = a†α4
a†α3

a†α6
a†α10

a†α13
|0〉,

which becomes

−a†α3
a†α4

a†α6
a†α10

a†α13
|0〉 = −|0001101000100100〉.

Similarly

a†α6
Φ3,6,10,13 = a†α6

|0001001000100100〉 = a†α6
a†α3

a†α6
a†α10

a†α13
|0〉,

which becomes
−a†α4

(a†α6
)2a†α10

a†α13
|0〉 = 0!

This gives a simple recipe:

• If one of the bits bj is 1 and we act with a creation operator on this bit,
we return a null vector

• If bj = 0, we set it to 1 and return a sign factor (−1)l, where l is the
number of bits set before bit j.

Consider the action of a†α2
on various slater determinants:

a†α2
Φ00111 = a†α2

|00111〉 = 0× |00111〉
a†α2

Φ01011 = a†α2
|01011〉 = (−1)× |01111〉

a†α2
Φ01101 = a†α2

|01101〉 = 0× |01101〉
a†α2

Φ01110 = a†α2
|01110〉 = 0× |01110〉

a†α2
Φ10011 = a†α2

|10011〉 = (−1)× |10111〉
a†α2

Φ10101 = a†α2
|10101〉 = 0× |10101〉

a†α2
Φ10110 = a†α2

|10110〉 = 0× |10110〉
a†α2

Φ11001 = a†α2
|11001〉 = (+1)× |11101〉

a†α2
Φ11010 = a†α2

|11010〉 = (+1)× |11110〉
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What is the simplest way to obtain the phase when we act with one annihila-
tion(creation) operator on the given Slater determinant representation?

We have an SD representation

ΦΛ = a†α0
a†α3

a†α6
a†α10

a†α13
|0〉,

in a more compact way as

Φ0,3,6,10,13 = |1001001000100100〉.

The action of

a†α4
aα0Φ0,3,6,10,13 = a†α4

|0001001000100100〉 = a†α4
a†α3

a†α6
a†α10

a†α13
|0〉,

which becomes

−a†α3
a†α4

a†α6
a†α10

a†α13
|0〉 = −|0001101000100100〉.

The action
aα0Φ0,3,6,10,13 = |0001001000100100〉,

can be obtained by subtracting the logical sum (AND operation) of Φ0,3,6,10,13
and a word which represents only α0, that is

|1000000000000000〉,

from Φ0,3,6,10,13 = |1001001000100100〉.
This operation gives |0001001000100100〉.
Similarly, we can form a†α4

aα0Φ0,3,6,10,13, say, by adding |0000100000000000〉
to aα0Φ0,3,6,10,13, first checking that their logical sum is zero in order to make
sure that orbital α4 is not already occupied.

It is trickier however to get the phase (−1)l. One possibility is as follows

• Let S1 be a word that represents the 1−bit to be removed and all others
set to zero.

In the previous example S1 = |1000000000000000〉

• Define S2 as the similar word that represents the bit to be added, that is
in our case

S2 = |0000100000000000〉.

• Compute then S = S1 − S2, which here becomes

S = |0111000000000000〉

• Perform then the logical AND operation of S with the word containing

Φ0,3,6,10,13 = |1001001000100100〉,
which results in |0001000000000000〉. Counting the number of 1−bits gives the
phase. Here you need however an algorithm for bitcounting. Several efficient
ones available.
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Exercise 1: Relation between basis functions
This exercise serves to convince you about the relation between two different
single-particle bases, where one could be our new Hartree-Fock basis and the
other a harmonic oscillator basis.

Consider a Slater determinant built up of single-particle orbitals ψλ, with
λ = 1, 2, . . . , A. The unitary transformation

ψa =
∑
λ

Caλφλ,

brings us into the new basis. The new basis has quantum numbers a = 1, 2, . . . , A.
Show that the new basis is orthonormal. Show that the new Slater determinant
constructed from the new single-particle wave functions can be written as the
determinant based on the previous basis and the determinant of the matrix C.
Show that the old and the new Slater determinants are equal up to a complex
constant with absolute value unity. (Hint, C is a unitary matrix).

Starting with the second quantization representation of the Slater determinant

Φ0 =
n∏
i=1

a†αi
|0〉,

use Wick’s theorem to compute the normalization integral 〈Φ0|Φ0〉.

Exercise 2: Matrix elements
Calculate the matrix elements

〈α1α2|F̂ |α1α2〉

and
〈α1α2|Ĝ|α1α2〉

with
|α1α2〉 = a†α1

a†α2
|0〉,

F̂ =
∑
αβ

〈α|f̂ |β〉a†αaβ ,

〈α|f̂ |β〉 =
∫
ψ∗α(x)f(x)ψβ(x)dx,

Ĝ = 1
2
∑
αβγδ

〈αβ|ĝ|γδ〉a†αa
†
βaδaγ ,

and
〈αβ|ĝ|γδ〉 =

∫ ∫
ψ∗α(x1)ψ∗β(x2)g(x1, x2)ψγ(x1)ψδ(x2)dx1dx2

Compare these results with those from exercise 3c).
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Exercise 3: Normal-ordered one-body operator
Show that the onebody part of the Hamiltonian

Ĥ0 =
∑
pq

〈p|ĥ0|q〉a†paq,

can be written, using standard annihilation and creation operators, in normal-
ordered form as

Ĥ0 =
∑
pq

〈p|ĥ0|q〉
{
a†paq

}
+
∑
i

〈i|ĥ0|i〉.

Explain the meaning of the various symbols. Which reference vacuum has been
used?

Exercise 4: Normal-ordered two-body operator
Show that the twobody part of the Hamiltonian

ĤI = 1
4
∑
pqrs

〈pq|v̂|rs〉a†pa†qasar,

can be written, using standard annihilation and creation operators, in normal-
ordered form as

ĤI = 1
4
∑
pqrs

〈pq|v̂|rs〉
{
a†pa
†
qasar

}
+
∑
pqi

〈pi|v̂|qi〉
{
a†paq

}
+ 1

2
∑
ij

〈ij|v̂|ij〉.

Explain again the meaning of the various symbols.
This exercise is optional: Derive the normal-ordered form of the threebody

part of the Hamiltonian.

Ĥ3 = 1
36
∑
pqr
stu

〈pqr|v̂3|stu〉a†pa†qa†rauatas,

and specify the contributions to the twobody, onebody and the scalar part.

Exercise 5: Matrix elements using the Slater-Condon rule
The aim of this exercise is to set up specific matrix elements that will turn useful
when we start our discussions of the nuclear shell model. In particular you will
notice, depending on the character of the operator, that many matrix elements
will actually be zero.

Consider three N -particle Slater determinants |Φ0, |Φa
i 〉 and |Φab

ij 〉, where
the notation means that Slater determinant |Φai 〉 differs from |Φ0〉 by one single-
particle state, that is a single-particle state ψi is replaced by a single-particle
state ψa. It is often interpreted as a so-called one-particle-one-hole excitation.
Similarly, the Slater determinant |Φabij 〉 differs by two single-particle states from
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|Φ0〉 and is normally thought of as a two-particle-two-hole excitation. We assume
also that |Φ0〉 represents our new vacuum reference state and the labels ijk . . .
represent single-particle states below the Fermi level and abc . . . represent states
above the Fermi level, so-called particle states. We define thereafter a general
onebody normal-ordered (with respect to the new vacuum state) operator as

F̂N =
∑
pq

〈p|f |β〉
{
a†paq

}
,

with
〈p|f |q〉 =

∫
ψ∗p(x)f(x)ψq(x)dx,

and a general normal-ordered two-body operator

ĜN = 1
4
∑
pqrs

〈pq|g|rs〉AS
{
a†pa
†
qasar

}
,

with for example the direct matrix element given as

〈pq|g|rs〉 =
∫ ∫

ψ∗p(x1)ψ∗q (x2)g(x1, x2)ψr(x1)ψs(x2)dx1dx2

with g being invariant under the interchange of the coordinates of two particles.
The single-particle states ψi are not necessarily eigenstates of f̂ . The curly
brackets mean that the operators are normal-ordered with respect to the new
vacuum reference state.

How would you write the above Slater determinants in a second quantization
formalism, utilizing the fact that we have defined a new reference state?

Use thereafter Wick’s theorem to find the expectation values of

〈Φ0|F̂N |Φ0〉,

and
〈Φ0ĜN |Φ0〉.

Find thereafter
〈Φ0|F̂N |Φai 〉,

and
〈Φ0|ĜN |Φai 〉,

Finally, find
〈Φ0|F̂N |Φabij 〉,

and
〈Φ0|ĜN |Φabij 〉.

What happens with the two-body operator if we have a transition probability of
the type

〈Φ0|ĜN |Φabcijk〉,
where the Slater determinant to the right of the operator differs by more than
two single-particle states?
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Exercise 6: Program to set up Slater determinants
Write a program which sets up all possible Slater determinants given N = 4
eletrons which can occupy the atomic single-particle states defined by the 1s,
2s2p and 3s3p3d shells. How many single-particle states n are there in total?
Include the spin degrees of freedom as well.

Exercise 7: Using sympy to compute matrix elements
Compute the matrix element

〈α1α2α3|Ĝ|α′1α′2α′3〉,

using Wick’s theorem and express the two-body operator G in the occupation
number (second quantization) representation.

Exercise 8: Using sympy to compute matrix elements
The last exercise can be solved using the symbolic Python package called SymPy.
SymPy is a Python package for general purpose symbolic algebra. There
is a physics module with several interesting submodules. Among these, the
submodule called secondquant, contains several functionalities that allow us to
test our algebraic manipulations using Wick’s theorem and operators for second
quantization.

from sympy import *
from sympy.physics.secondquant import *

i, j = symbols(’i,j’, below_fermi=True)
a, b = symbols(’a,b’, above_fermi=True)
p, q = symbols(’p,q’)
print simplify(wicks(Fd(i)*F(a)*Fd(p)*F(q)*Fd(b)*F(j), keep_only_fully_contracted=True))

The code defines single-particle states above and below the Fermi level, in
addition to the genereal symbols pq which can refer to any type of state below
or above the Fermi level. Wick’s theorem is implemented between the creation
and annihilation operators Fd and F, respectively. Using the simplify option,
one can lump together several Kronecker-δ functions.

Exercise 9: Using sympy to compute matrix elements
We can expand the above Python code by defining one-body and two-body
operators using the following SymPy code

# This code sets up a two-body Hamiltonian for fermions
from sympy import symbols, latex, WildFunction, collect, Rational
from sympy.physics.secondquant import F, Fd, wicks, AntiSymmetricTensor, substitute_dummies, NO

# setup hamiltonian
p,q,r,s = symbols(’p q r s’,dummy=True)
f = AntiSymmetricTensor(’f’,(p,),(q,))
pr = NO((Fd(p)*F(q)))
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v = AntiSymmetricTensor(’v’,(p,q),(r,s))
pqsr = NO(Fd(p)*Fd(q)*F(s)*F(r))
Hamiltonian=f*pr + Rational(1)/Rational(4)*v*pqsr
print "Hamiltonian defined as:", latex(Hamiltonian)

Here we have used the AntiSymmetricTensor functionality, together with normal-
ordering defined by the NO function. Using the latex option, this program
produces the following output

fpq
{
a†paq

}
− 1

4v
qp
sr

{
a†pa
†
qaras

}
Exercise 10: Using sympy to compute matrix elements
We can now use this code to compute the matrix elements between two two-body
Slater determinants using Wick’s theorem.

from sympy import symbols, latex, WildFunction, collect, Rational, simplify
from sympy.physics.secondquant import F, Fd, wicks, AntiSymmetricTensor, substitute_dummies, NO, evaluate_deltas
# setup hamiltonian
p,q,r,s = symbols(’p q r s’,dummy=True)
f = AntiSymmetricTensor(’f’,(p,),(q,))
pr = NO((Fd(p)*F(q)))
v = AntiSymmetricTensor(’v’,(p,q),(r,s))
pqsr = NO(Fd(p)*Fd(q)*F(s)*F(r))
Hamiltonian=f*pr + Rational(1)/Rational(4)*v*pqsr
c,d = symbols(’c, d’,above_fermi=True)
a,b = symbols(’a, b’,above_fermi=True)

expression = wicks(F(b)*F(a)*Hamiltonian*Fd(c)*Fd(d),keep_only_fully_contracted=True, simplify_kronecker_deltas=True)
expression = evaluate_deltas(expression)
expression = simplify(expression)
print "Hamiltonian defined as:", latex(expression)

The result is as expected,

δacf
b
d − δadf bc − δbcfad + δbdf

a
c + vabcd .

Exercise 11: Using sympy to compute matrix elements
We can continue along these lines and define a normal-ordered Hamiltonian
with respect to a given reference state. In our first step we just define the
Hamiltonian

from sympy import symbols, latex, WildFunction, collect, Rational, simplify
from sympy.physics.secondquant import F, Fd, wicks, AntiSymmetricTensor, substitute_dummies, NO, evaluate_deltas
# setup hamiltonian
p,q,r,s = symbols(’p q r s’,dummy=True)
f = AntiSymmetricTensor(’f’,(p,),(q,))
pr = Fd(p)*F(q)
v = AntiSymmetricTensor(’v’,(p,q),(r,s))
pqsr = Fd(p)*Fd(q)*F(s)*F(r)
#define the Hamiltonian
Hamiltonian = f*pr + Rational(1)/Rational(4)*v*pqsr
#define indices for states above and below the Fermi level
index_rule = {
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’below’: ’kl’,
’above’: ’cd’,
’general’: ’pqrs’
}

Hnormal = substitute_dummies(Hamiltonian,new_indices=True, pretty_indices=index_rule)
print "Hamiltonian defined as:", latex(Hnormal)

which results in
fqpa
†
qap + 1

4v
sr
qpa
†
sa
†
rapaq

Exercise 12: Using sympy to compute matrix elements
In our next step we define the reference energy E0 and redefine the Hamiltonian
by subtracting the reference energy and collecting the coefficients for all normal-
ordered products (given by the NO function).

from sympy import symbols, latex, WildFunction, collect, Rational, simplify
from sympy.physics.secondquant import F, Fd, wicks, AntiSymmetricTensor, substitute_dummies, NO, evaluate_deltas
# setup hamiltonian
p,q,r,s = symbols(’p q r s’,dummy=True)
f = AntiSymmetricTensor(’f’,(p,),(q,))
pr = Fd(p)*F(q)
v = AntiSymmetricTensor(’v’,(p,q),(r,s))
pqsr = Fd(p)*Fd(q)*F(s)*F(r)
#define the Hamiltonian
Hamiltonian=f*pr + Rational(1)/Rational(4)*v*pqsr
#define indices for states above and below the Fermi level
index_rule = {

’below’: ’kl’,
’above’: ’cd’,
’general’: ’pqrs’
}

Hnormal = substitute_dummies(Hamiltonian,new_indices=True, pretty_indices=index_rule)
E0 = wicks(Hnormal,keep_only_fully_contracted=True)
Hnormal = Hnormal-E0
w = WildFunction(’w’)
Hnormal = collect(Hnormal, NO(w))
Hnormal = evaluate_deltas(Hnormal)
print latex(Hnormal)

which gives us

−f ii + fqpa
†
qap −

1
4v

ii
ii −

1
4v

ii
ii + 1

4v
sr
qpa
†
ra
†
saqap,

again as expected, with the reference energy to be subtracted.

Exercise 13: Using sympy to compute matrix elements
We can now go back to exercise 7 and define the Hamiltonian and the second-
quantized representation of a three-body Slater determinant.

from sympy import symbols, latex, WildFunction, collect, Rational, simplify
from sympy.physics.secondquant import F, Fd, wicks, AntiSymmetricTensor, substitute_dummies, NO, evaluate_deltas
# setup hamiltonian
p,q,r,s = symbols(’p q r s’,dummy=True)
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v = AntiSymmetricTensor(’v’,(p,q),(r,s))
pqsr = NO(Fd(p)*Fd(q)*F(s)*F(r))
Hamiltonian=Rational(1)/Rational(4)*v*pqsr
a,b,c,d,e,f = symbols(’a,b, c, d, e, f’,above_fermi=True)

expression = wicks(F(c)*F(b)*F(a)*Hamiltonian*Fd(d)*Fd(e)*Fd(f),keep_only_fully_contracted=True, simplify_kronecker_deltas=True)
expression = evaluate_deltas(expression)
expression = simplify(expression)
print latex(expression)

resulting in nine terms (as expected),

−δadvcbef − δaevcbfd + δafv
cb
ed − δbdvacef − δbevacfd + δbfv

ac
ed + δcdv

ab
ef + δcev

ab
fd − δcfvabed

Exercise 14: Diagrammatic representation of Hartree-Fock
equations
What is the diagrammatic representation of the HF equation?

−〈αk|uHF |αi〉+
n∑
j=1

[〈αkαj |v̂|αiαj〉 − 〈αkαj |v|αjαi〉] = 0

(Represent (−uHF ) by the symbol −−−X .)

Exercise 15: Derivation of Hartree-Fock equations
Consider the ground state |Φ〉 of a bound many-particle system of fermions.
Assume that we remove one particle from the single-particle state λ and that
our system ends in a new state |Φn〉. Define the energy needed to remove this
particle as

Eλ =
∑
n

|〈Φn|aλ|Φ〉|2(E0 − En),

where E0 and En are the ground state energies of the states |Φ〉 and |Φn〉,
respectively.

• Show that

Eλ = 〈Φ|a†λ [aλ, H] |Φ〉,

where H is the Hamiltonian of this system.

• If we assume that Φ is the Hartree-Fock result, find the

relation between Eλ and the single-particle energy ελ for states λ ≤ F and
λ > F , with

ελ = 〈λ|t̂+ û|λ〉,

and
〈λ|û|λ〉 =

∑
β≤F

〈λβ|v̂|λβ〉.
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We have assumed an antisymmetrized matrix element here. Discuss the result.
The Hamiltonian operator is defined as

H =
∑
αβ

〈α|t̂|β〉a†αaβ + 1
2
∑
αβγδ

〈αβ|v̂|γδ〉a†αa
†
βaδaγ .
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