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Quantum numbers
Outline.

• Discussion of single-particle and two-particle quantum numbers, uncoupled
and coupled schemes

• Discussion of angular momentum recouplings and the Wigner-Eckart theo-
rem

• Applications to specific operators like the nuclear two-body tensor force

For quantum numbers, chapter 1 on angular momentum and chapter 5 of Suhonen
and chapters 5, 12 and 13 of Alex Brown. For a discussion of isospin, see for
example Alex Brown’s lecture notes chapter 12, 13 and 19.

Motivation
When solving the Hartree-Fock project using a nucleon-nucleon interaction in
an uncoupled basis (m-scheme), we found a high level of degeneracy. One sees
clear from the table here that we have a degeneracy in the angular momentum
j, resulting in 2j + 1 states with the same energy. This reflects the rotational
symmetry and spin symmetry of the nuclear forces.
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Quantum numbers Energy [MeV]
0sπ1/2 -40.4602
0sπ1/2 -40.4602
0sν1/2 -40.6426
0sν1/2 -40.6426
0pπ1/2 -6.7133
0pπ1/2 -6.7133
0pν1/2 -6.8403
0pν1/2 -6.8403
0pπ3/2 -11.5886
0pπ3/2 -11.5886
0pπ3/2 -11.5886
0pπ3/2 -11.5886
0pν3/2 -11.7201
0pν3/2 -11.7201
0pν3/2 -11.7201
0pν3/2 -11.7201

We observe that with increasing value of j the degeneracy increases. For j = 3/2
we end up diagonalizing the same matrix four times. With increasing value of j,
it is rather obvious that our insistence on using an uncoupled scheme (or just
m-scheme) will lead to unnecessary labor from our side (or more precisely, for
the computer). The obvious question we should pose ourselves then is whether
we can use the underlying symmetries of the nuclear forces in order to reduce
our efforts.

Single-particle and two-particle quantum numbers
In order to understand the basics of the nucleon-nucleon interaction and the

pertaining symmetries, we need to define the relevant quantum numbers and
how we build up a single-particle state and a two-body state, and obviously our
final holy grail, a many-boyd state.

• For the single-particle states, due to the fact that we have the spin-orbit
force, the quantum numbers for the projection of orbital momentum l, that
is ml, and for spin s, that is ms, are no longer so-called good quantum
numbers. The total angular momentum j and its projection mj are then
so-called good quantum numbers.

• This means that the operator Ĵ2 does not commute with L̂z or Ŝz.

• We also start normally with single-particle state functions defined using
say the harmonic oscillator. For these functions, we have no explicit
dependence on j. How can we introduce single-particle wave functions
which have j and its projection mj as quantum numbers?
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Single-particle and two-particle quantum numbers, brief re-
view on angular momenta etc

We have that the operators for the orbital momentum are given by

Lx = −i~(y ∂
∂z
− z ∂

∂y
) = ypz − zpy,

Ly = −i~(z ∂
∂x
− x ∂

∂z
) = zpx − xpz,

Lz = −i~(x ∂
∂y
− y ∂

∂x
) = xpy − ypx.

Single-particle and two-particle quantum numbers, brief re-
view on angular momenta etc

Since we have a spin orbit force which is strong, it is easy to show that the
total angular momentum operator

Ĵ = L̂+ Ŝ

does not commute with L̂z and Ŝz. To see this, we calculate for example
[L̂z, Ĵ2] = [L̂z, (L̂+ Ŝ)2] (1)

= [L̂z, L̂2 + Ŝ2 + 2L̂Ŝ]
= [L̂z, L̂Ŝ] = [L̂z, L̂xŜx + L̂yŜy + L̂zŜz] 6= 0,

since we have that [L̂z, L̂x] = i~L̂y and [L̂z, L̂y] = i~L̂x.

Single-particle and two-particle quantum numbers, brief re-
view on angular momenta etc

We have also
|Ĵ | = ~

√
J(J + 1),

with the the following degeneracy
MJ = −J,−J + 1, . . . , J − 1, J.

With a given value of L and S we can then determine the possible values of J
by studying the z component of Ĵ . It is given by

Ĵz = L̂z + Ŝz.

The operators L̂z and Ŝz have the quantum numbers Lz = ML~ and Sz = MS~,
respectively, meaning that

MJ~ = ML~ +MS~,

or
MJ = ML +MS .

Since the max value of ML is L and for MS is S we obtain
(MJ)maks = L+ S.

3



Single-particle and two-particle quantum numbers, brief re-
view on angular momenta etc

For nucleons we have that the maximum value of MS = ms = 1/2, yielding

(mj)max = l + 1
2 .

Using this and the fact that the maximum value of MJ = mj is j we have

j = l + 1
2 , l −

1
2 , l −

3
2 , l −

5
2 , . . .

To decide where this series terminates, we use the vector inequality

|L̂+ Ŝ| ≥
∣∣∣|L̂| − |Ŝ|∣∣∣ .

Single-particle and two-particle quantum numbers, brief re-
view on angular momenta etc

Using Ĵ = L̂+ Ŝ we get
|Ĵ | ≥ |L̂| − |Ŝ|,

or
|Ĵ | = ~

√
J(J + 1) ≥ |~

√
L(L+ 1)− ~

√
S(S + 1)|.

Single-particle and two-particle quantum numbers, brief re-
view on angular momenta etc

If we limit ourselves to nucleons only with s = 1/2 we find that

|Ĵ | = ~
√
j(j + 1) ≥ |~

√
l(l + 1)− ~

√
1
2(1

2 + 1)|.

It is then easy to show that for nucleons there are only two possible values of j
which satisfy the inequality, namely

j = l + 1
2 or j = l − 1

2 ,

and with l = 0 we get
j = 1

2 .

Single-particle and two-particle quantum numbers, brief re-
view on angular momenta etc

Let us study some selected examples. We need also to keep in mind that parity
is conserved. The strong and electromagnetic Hamiltonians conserve parity.
Thus the eigenstates can be broken down into two classes of states labeled by
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their parity π = +1 or π = −1. The nuclear interactions do not mix states with
different parity.

For nuclear structure the total parity originates from the intrinsic parity of
the nucleon which is πintrinsic = +1 and the parities associated with the orbital
angular momenta πl = (−1)l . The total parity is the product over all nucleons
π =

∏
i πintrinsic(i)πl(i) =

∏
i(−1)li

The basis states we deal with are constructed so that they conserve parity
and have thus a definite parity.

Note that we do have parity violating processes, more on this later although
our focus will be mainly on non-parity viloating processes

Single-particle and two-particle quantum numbers
Consider now the single-particle orbits of the 1s0d shell. For a 0d state we

have the quantum numbers l = 2, ml = −2,−1, 0, 1, 2, s + 1/2, ms = ±1/2,
n = 0 (the number of nodes of the wave function). This means that we have
positive parity and

j = 3
2 = l − s mj = −3

2 ,−
1
2 ,

1
2 ,

3
2 .

and
j = 5

2 = l + s mj = −5
2 ,−

3
2 ,−

1
2 ,

1
2 ,

3
2 ,

5
2 .

Single-particle and two-particle quantum numbers
Our single-particle wave functions, if we use the harmonic oscillator, do however

not contain the quantum numbers j and mj . Normally what we have is an
eigenfunction for the one-body problem defined as

φnlmlsms(r, θ, φ) = Rnl(r)Ylml
(θ, φ)ξsms ,

where we have used spherical coordinates (with a spherically symmetric potential)
and the spherical harmonics

Ylml
(θ, φ) = P (θ)F (φ) =

√
(2l + 1)(l −ml)!

4π(l +ml)!
Pml

l (cos(θ)) exp (imlφ),

with Pml

l being the so-called associated Legendre polynomials.

Single-particle and two-particle quantum numbers
Examples are

Y00 =
√

1
4π ,

for l = ml = 0,

Y10 =
√

3
4π cos(θ),
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for l = 1 and ml = 0,

Y1±1 =
√

3
8π sin(θ)exp(±iφ),

for l = 1 and ml = ±1,

Y20 =
√

5
16π (3cos2(θ)− 1)

for l = 2 and ml = 0 etc.

Single-particle and two-particle quantum numbers
How can we get a function in terms of j and mj? Define now

φnlmlsms
(r, θ, φ) = Rnl(r)Ylml

(θ, φ)ξsms
,

and
ψnjmj ;lmlsms

(r, θ, φ),

as the state with quantum numbers jmj . Operating with

ĵ2 = (l̂ + ŝ)2 = l̂2 + ŝ2 + 2l̂z ŝz + l̂+ŝ− + l̂−ŝ+,

on the latter state we will obtain admixtures from possible φnlmlsms
(r, θ, φ)

states.

Single-particle and two-particle quantum numbers
To see this, we consider the following example and fix

j = 3
2 = l − s mj = 3

2 .

and
j = 5

2 = l + s mj = 3
2 .

It means we can have, with l = 2 and s = 1/2 being fixed, in order to have
mj = 3/2 either ml = 1 and ms = 1/2 or ml = 2 and ms = −1/2. The two
states

ψn=0j=5/2mj=3/2;l=2s=1/2

and
ψn=0j=3/2mj=3/2;l=2s=1/2

will have admixtures from φn=0l=2ml=2s=1/2ms=−1/2 and φn=0l=2ml=1s=1/2ms=1/2.
How do we find these admixtures? Note that we don’t specify the values of ml

and ms in the functions ψ since ĵ2 does not commute with L̂z and Ŝz.
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Single-particle and two-particle quantum numbers
We operate with

ĵ2 = (l̂ + ŝ)2 = l̂2 + ŝ2 + 2l̂z ŝz + l̂+ŝ− + l̂−ŝ+

on the two jmj states, that is

ĵ2ψn=0j=5/2mj=3/2;l=2s=1/2 = α~2[l(l+1)+3
4+2mlms]φn=0l=2ml=2s=1/2ms=−1/2+

β~2
√
l(l + 1)−ml(ml − 1)φn=0l=2ml=1s=1/2ms=1/2,

and

ĵ2ψn=0j=3/2mj=3/2;l=2s=1/2 = α~2[l(l+1)+3
4+2mlms]+φn=0l=2ml=1s=1/2ms=1/2+

β~2
√
l(l + 1)−ml(ml + 1)φn=0l=2ml=2s=1/2ms=−1/2.

Single-particle and two-particle quantum numbers
This means that the eigenvectors φn=0l=2ml=2s=1/2ms=−1/2 etc are not eigen-

vectors of ĵ2. The above problems gives a 2× 2 matrix that mixes the vectors
ψn=0j=5/2mj3/2;l=2mls=1/2ms

and ψn=0j=3/2mj3/2;l=2mls=1/2ms
with the states

φn=0l=2ml=2s=1/2ms=−1/2 and φn=0l=2ml=1s=1/2ms=1/2. The unknown coeffi-
cients α and β are the eigenvectors of this matrix. That is, inserting all values
ml, l,ms, s we obtain the matrix[

19/4 2
2 31/4

]
whose eigenvectors are the columns of[

2/
√

5 1/
√

5
1/
√

5 −2/
√

5

]
These numbers define the so-called Clebsch-Gordan coupling coefficients (the
overlaps between the two basis sets). We can thus write

ψnjmj ;ls =
∑
mlms

〈lmlsms|jmj〉φnlmlsms
,

where the coefficients 〈lmlsms|jmj〉 are the so-called Clebsch-Gordan coefffi-
cients.
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Clebsch-Gordan coefficients
The Clebsch-Gordan coeffficients 〈lmlsms|jmj〉 have some interesting proper-

ties for us, like the following orthogonality relations∑
m1m2

〈j1m1j2m2|JM〉〈j1m1j2m2|J ′M ′〉 = δJ,J ′δM,M ′ ,

∑
JM

〈j1m1j2m2|JM〉〈j1m
′
1j2m

′
2|JM〉 = δm1,m′

1
δm2,m′

2
,

〈j1m1j2m2|JM〉 = (−1)j1+j2−J〈j2m2j1m1|JM〉,

and many others. The latter will turn extremely useful when we are going to
define two-body states and interactions in a coupled basis.

Clebsch-Gordan coefficients, testing the orthogonality rela-
tions
The orthogonality relation can be tested using the symbolic python package

wigner. Let us test∑
m1m2

〈j1m1j2m2|JM〉〈j1m1j2m2|J ′M ′〉 = δJ,J ′δM,M ′ ,

The following program tests this relation for the case of j1 = 3/2 and j2 = 3/2
meaning that m1 and m2 run from −3/2 to 3/2.

from sympy import S
from sympy.physics.wigner import clebsch_gordan
# Twice the values of j1 and j2
j1 = 3
j2 = 3
J = 2
Jp = 2
M = 2
Mp = 3
sum = 0.0
for m1 in range(-j1, j1+2, 2):

for m2 in range(-j2, j2+2, 2):
M = (m1+m2)/2.
""" Call j1, j2, J, m1, m2, m1+m2 """
sum += clebsch_gordan(S(j1)/2, S(j2)/2, J, S(m1)/2, S(m2)/2, M)*clebsch_gordan(S(j1)/2, S(j2)/2, Jp, S(m1)/2, S(m2)/2, Mp)

print sum

Quantum numbers and the Schroeodinger equation in rela-
tive and CM coordinates

Summing up, for for the single-particle case, we have the following eigenfunc-
tions

ψnjmj ;ls =
∑
mlms

〈lmlsms|jmj〉φnlmlsms ,
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where the coefficients 〈lmlsms|jmj〉 are the so-called Clebsch-Gordan coefffi-
cients. The relevant quantum numbers are n (related to the principal quantum
number and the number of nodes of the wave function) and

ĵ2ψnjmj ;ls = ~2j(j + 1)ψnjmj ;ls,

ĵzψnjmj ;ls = ~mjψnjmj ;ls,

l̂2ψnjmj ;ls = ~2l(l + 1)ψnjmj ;ls,

ŝ2ψnjmj ;ls = ~2s(s+ 1)ψnjmj ;ls,

but sz and lz do not result in good quantum numbers in a basis where we use
the angular momentum j.

Quantum numbers and the Schroedinger equation in rela-
tive and CM coordinates

For a two-body state where we couple two angular momenta j1 and j2 to a final
angular momentum J with projectionMJ , we can define a similar transformation
in terms of the Clebsch-Gordan coeffficients

ψ(j1j2)JMJ
=

∑
mj1mj2

〈j1mj1j2mj2 |JMJ〉ψn1j1mj1 ;l1s1ψn2j2mj2 ;l2s2 .

We will write these functions in a more compact form hereafter, namely,

|(j1j2)JMJ〉 = ψ(j1j2)JMJ
,

and
|jimji〉 = ψnijimji

;lisi ,

where we have skipped the explicit reference to l, s and n. The spin of a nucleon
is always 1/2 while the value of l can be deduced from the parity of the state.
It is thus normal to label a state with a given total angular momentum as jπ,
where π = ±1.

Quantum numbers and the Schroedinger equation in rela-
tive and CM coordinates
Our two-body state can thus be written as

|(j1j2)JMJ〉 =
∑

mj1mj2

〈j1mj1j2mj2 |JMJ〉|j1mj1〉|j2mj2〉.

Due to the coupling order of the Clebsch-Gordan coefficient it reads as j1 coupled
to j2 to yield a final angular momentum J . If we invert the order of coupling we
would have

|(j2j1)JMJ〉 =
∑

mj1mj2

〈j2mj2j1mj1 |JMJ〉|j1mj1〉|j2mj2〉,
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and due to the symmetry properties of the Clebsch-Gordan coefficient we have

|(j2j1)JMJ〉 = (−1)j1+j2−J
∑

mj1mj2

〈j1mj1j2mj2 |JMJ〉|j1mj1〉|j2mj2〉 = (−1)j1+j2−J |(j1j2)JMJ〉.

We call the basis |(j1j2)JMJ〉 for the coupled basis, or just j-coupled ba-
sis/scheme. The basis formed by the simple product of single-particle eigenstates
|j1mj1〉|j2mj2〉 is called the uncoupled-basis, or just the m-scheme basis.

Quantum numbers
We have thus the coupled basis

|(j1j2)JMJ〉 =
∑

mj1mj2

〈j1mj1j2mj2 |JMJ〉|j1mj1〉|j2mj2〉.

and the uncoupled basis
|j1mj1〉|j2mj2〉.

The latter can easily be generalized to many single-particle states whereas the
first needs specific coupling coefficients and definitions of coupling orders. The
m-scheme basis is easy to implement numerically and is used in most standard
shell-model codes. Our coupled basis obeys also the following relations

Ĵ2|(j1j2)JMJ〉 = ~2J(J + 1)|(j1j2)JMJ〉

Ĵz|(j1j2)JMJ〉 = ~MJ |(j1j2)JMJ〉,

Components of the force and isospin
The nuclear forces are almost charge independent. If we assume they are, we

can introduce a new quantum number which is conserved. For nucleons only,
that is a proton and neutron, we can limit ourselves to two possible values which
allow us to distinguish between the two particles. If we assign an isospin value
of τ = 1/2 for protons and neutrons (they belong to an isospin doublet, in the
same way as we discussed the spin 1/2 multiplet), we can define the neutron
to have isospin projection τz = +1/2 and a proton to have τz = −1/2. These
assignements are the standard choices in low-energy nuclear physics.

Isospin
This leads to the introduction of an additional quantum number called isospin.

We can define a single-nucleon state function in terms of the quantum numbers
n, j, mj , l, s, τ and τz. Using our definitions in terms of an uncoupled basis, we
had

ψnjmj ;ls =
∑
mlms

〈lmlsms|jmj〉φnlmlsms ,
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which we can now extend to

ψnjmj ;lsξττz
=
∑
mlms

〈lmlsms|jmj〉φnlmlsmsξττz ,

with the isospin spinors defined as

ξτ=1/2τz=+1/2 =
(

1
0

)
,

and
ξτ=1/2τz=−1/2 =

(
0
1

)
.

We can then define the proton state function as

ψp(r) = ψnjmj ;ls(r)
(

0
1

)
,

and similarly for neutrons as

ψn(r) = ψnjmj ;ls(r)
(

1
0

)
.

Isospin
We can in turn define the isospin Pauli matrices (in the same as we define the

spin matrices) as

τ̂x =
(

0 1
1 0

)
,

τ̂y =
(

0 −ı
ı 0

)
,

and
τ̂z =

(
1 0
0 −1

)
,

and operating with τ̂z on the proton state function we have

τ̂zψ
p(r) = −1

2ψ
p(r),

and for neutrons we have
τ̂ψn(r) = 1

2ψ
n(r).
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Isospin
We can now define the so-called charge operator as

Q̂

e
= 1

2 (1− τ̂z) =
{

0 0
0 1

}
,

which results in
Q̂

e
ψp(r) = ψp(r),

and
Q̂

e
ψn(r) = 0,

as it should be.

Isospin
The total isospin is defined as

T̂ =
A∑
i=1

τ̂i,

and its corresponding isospin projection as

T̂z =
A∑
i=1

τ̂zi
,

with eigenvalues T (T + 1) for T̂ and 1/2(N − Z) for T̂z, where N is the number
of neutrons and Z the number of protons.

If charge is conserved, the Hamiltonian Ĥ commutes with T̂z and all members
of a given isospin multiplet (that is the same value of T ) have the same energy
and there is no Tz dependence and we say that Ĥ is a scalar in isospin space.

Angular momentum algebra, Examples
We have till now seen the following definitions of a two-body matrix elements

with quantum numbers p = jpmp etc we have a two-body state defined as

|(pq)M〉 = a†pa
†
q|Φ0〉,

where |Φ0〉 is a chosen reference state, say for example the Slater determinant
which approximates 16O with the 0s and the 0p shells being filled, and M =
mp + mq. Recall that we label single-particle states above the Fermi level as
abcd . . . and states below the Fermi level for ijkl . . . . In case of two-particles in
the single-particle states a and b outside 16O as a closed shell core, say 18O, we
would write the representation of the Slater determinant as

|18O〉 = |(ab)M〉 = a†aa
†
b|

16O〉 = |Φab〉.
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In case of two-particles removed from say 16O, for example two neutrons in the
single-particle states i and j, we would write this as

|14O〉 = |(ij)M〉 = ajai|16O〉 = |Φij〉.

Angular momentum algebra and many-body states
For a one-hole-one-particle state we have

|16O〉1p1h = |(ai)M〉 = a†aai|16O〉 = |Φai 〉,

and finally for a two-particle-two-hole state we

|16O〉2p2h = |(abij)M〉 = a†aa
†
bajai|

16O〉 = |Φabij 〉.

Angular momentum algebra, two-body state and anti-symmetrized
matrix elements
Let us go back to the case of two-particles in the single-particle states a and

b outside 16O as a closed shell core, say 18O. The representation of the Slater
determinant is

|18O〉 = |(ab)M〉 = a†aa
†
b|

16O〉 = |Φab〉.

The anti-symmetrized matrix element is detailed as

〈(ab)M |V̂ |(cd)M〉 = 〈(jamajbmb)M = ma +mb|V̂ |(jcmcjdmd)M = ma +mb〉,

and note that anti-symmetrization means

〈(ab)M |V̂ |(cd)M〉 = −〈(ba)M |V̂ |(cd)M〉 = 〈(ba)M |V̂ |(dc)M〉,

〈(ab)M |V̂ |(cd)M〉 = −〈(ab)M |V̂ |(dc)M〉.

Angular momentum algebra, Wigner-Eckart theorem, Ex-
amples
This matrix element is given by

〈16O|abaa
1
4
∑
pqrs

〈(pq)M |V̂ |(rs)M ′〉a†pa†qasara†ca
†
d|

16O〉.

We can compute this matrix element using Wick’s theorem.
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Angular momentum algebra, Wigner-Eckart theorem, Ex-
amples
We have also defined matrix elements in the coupled basis, the so-called

J-coupled scheme. In this case the two-body wave function for two neutrons
outside 16O is written as

|18O〉J = |(ab)JM〉 =
{
a†aa
†
b

}J
M
|16O〉 = Nab

∑
mamb

〈jamajbmb|JM〉|Φab〉,

with
|Φab〉 = a†aa

†
b|

16O〉.

We have now an explicit coupling order, where the angular momentum ja is
coupled to the angular momentum jb to yield a final two-body angular momentum
J . The normalization factor is

Nab =
√

1 + δab × (−1)J
1 + δab

.

Angular momentum algebra
We note that, using the anti-commuting properties of the creation operators,

we obtain

Nab
∑
mamb

〈jamajbmb|JM〉|Φab〉 = −Nab
∑
mamb

〈jamajbmb|JM〉|Φba〉.

Furthermore, using the property of the Clebsch-Gordan coefficient

〈jamajbmb|JM >= (−1)ja+jb−J〈jbmbjama|JM〉,

which can be used to show that

|(jbja)JM〉 =
{
a†ba
†
a

}J
M
|16O〉 = Nab

∑
mamb

〈jbmbjama|JM〉|Φba〉,

is equal to
|(jbja)JM〉 = (−1)ja+jb−J+1|(jajb)JM〉.

Angular momentum algebra, Wigner-Eckart theorem, Ex-
amples
The implementation of the Pauli principle looks different in the J-scheme

compared with the m-scheme. In the latter, no two fermions or more can have
the same set of quantum numbers. In the J-scheme, when we write a state with
the shorthand

|18O〉J = |(ab)JM〉,
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we do refer to the angular momenta only. This means that another way of
writing the last state is

|18O〉J = |(jajb)JM〉.

We will use this notation throughout when we refer to a two-body state in
J-scheme. The Kronecker δ function in the normalization factor refers thus to
the values of ja and jb. If two identical particles are in a state with the same
j-value, then only even values of the total angular momentum apply. In the
notation below, when we label a state as jp it will actually represent all quantum
numbers except mp.

Angular momentum algebra, two-body matrix elements
The two-body matrix element is a scalar and since it obeys rotational symmetry,

it is diagonal in J , meaning that the corresponding matrix element in J-scheme
is

〈(jajb)JM |V̂ |(jcjd)JM〉 = NabNcd
∑

mambmcmd

〈jamajbmb|JM〉

×〈jcmcjdmd|JM〉〈(jamajbmb)M |V̂ |(jcmcjdmd)M〉,

and note that of the four m-values in the above sum, only three are independent
due to the constraint ma +mb = M = mc +md.

Angular momentum algebra, two-body matrix element
Since

|(jbja)JM〉 = (−1)ja+jb−J+1|(jajb)JM〉,

the anti-symmetrized matrix elements need now to obey the following relations

〈(jajb)JM |V̂ |(jcjd)JM〉 = (−1)ja+jb−J+1〈(jbja)JM |V̂ |(jcjd)JM〉,

〈(jajb)JM |V̂ |(jcjd)JM〉 = (−1)jc+jd−J+1〈(jajb)JM |V̂ |(jdjc)JM〉,

〈(jajb)JM |V̂ |(jcjd)JM〉 = (−1)ja+jb+jc+jd〈(jbja)JM |V̂ |(jdjc)JM〉 = 〈(jbja)JM |V̂ |(jdjc)JM〉,

where the last relations follows from the fact that J is an integer and 2J is
always an even number.

Angular momentum algebra, two-body matrix element
Using the orthogonality properties of the Clebsch-Gordan coefficients,∑

mamb

〈jamajbmb|JM〉〈jamajbmb|J ′M ′〉 = δJJ ′δMM ′ ,

and ∑
JM

〈jamajbmb|JM〉〈jam′ajbm′b|JM〉 = δmam′
a
δmbm′

b
,
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we can also express the two-body matrix element in m-scheme in terms of that
in J-scheme, that is, if we multiply with∑

JMJ′M ′

〈jam′ajbm′b|JM〉〈jcm′cjdm′d|J ′M ′〉

from left in

〈(jajb)JM |V̂ |(jcjd)JM〉 = NabNcd
∑

mambmcmd

〈jamajbmb|JM〉〈jcmcjdmd|JM〉

×〈(jamajbmb)M |V̂ |(jcmcjdmd)M〉,
we obtain

〈(jamajbmb)M |V̂ |(jcmcjdmd)M〉 = 1
NabNcd

∑
JM

〈jamajbmb|JM〉〈jcmcjdmd|JM〉

×〈(jajb)JM |V̂ |(jcjd)JM〉.

The Hartree-Fock potential
We can now use the above relations to compute the Hartre-Fock energy in

j-scheme. In m-scheme we defined the Hartree-Fock energy as

εHF
pq = δpqεp +

∑
i≤F

〈pi|V̂ |qi〉AS ,

where the single-particle states pqi point to the quantum numbers in m-scheme.
For a state with for example j = 5/2, this results in six identical values for the
above potential. We would obviously like to reduce this to one only by rewriting
our equations in j-scheme.

Our Hartree-Fock basis is orthogonal by definition, meaning that we have

εHF
p = εp +

∑
i≤F

〈pi|V̂ |pi〉AS ,

The Hartree-Fock potential
We have

εHF
p = εp +

∑
i≤F

〈pi|V̂ |pi〉AS ,

where the single-particle states p = [np, jp,mp, tzp
]. Let us assume that p is

a state above the Fermi level. The quantity εp could represent the harmonic
oscillator single-particle energies.

Let p→ a.
The energies, as we have seen, are independent of ma and mi. We sum now

over all ma on both sides of the above equation and divide by 2ja + 1, recalling
that

∑
ma

= 2ja + 1. This results in

εHF
a = εa + 1

2ja + 1
∑
i≤F

∑
ma

〈ai|V̂ |ai〉AS ,
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The Hartree-Fock potential
We rewrite

εHF
a = εa + 1

2ja + 1
∑
i≤F

∑
ma

〈ai|V̂ |ai〉AS ,

as

εHF
a = εa + 1

2ja + 1
∑

ni,ji,tzi
≤F

∑
mima

〈(jamajimi)M |V̂ |(jamajimi)M〉AS ,

where we have suppressed the dependence on np and tz in the matrix element.
Using the definition

〈(jamajbmb)M |V̂ |(jcmcjdmd)M〉 = 1
NabNcd

∑
JM

〈jamajbmb|JM〉〈jcmcjdmd|JM〉〈(jajb)J |V̂ |(jcjd)M〉AS ,

with the orthogonality properties of Glebsch-Gordan coefficients and that the
j-coupled two-body matrix element is a scalar and independent of M we arrive
at

εHF
a = εa + 1

2ja + 1
∑
ji≤F

∑
J

(2J + 1)〈(jaji)J |V̂ |(jaji)M〉AS ,

First order in the potential energy
In a similar way it is easy to show that the potential energy contribution to

the ground state energy in m-scheme

1
2
∑
ij≤F

〈(jimijjmj)M |V̂ |(jimijjmj)M〉AS ,

can be rewritten as

1
2
∑

ji,jj≤F

∑
J

(2J + 1)〈(jijj)J |V̂ |(jijj)J〉AS ,

This reduces the number of floating point operations with an order of magnitude
on average.

Angular momentum algebra
We are now going to define two-body and many-body states in an angular

momentum coupled basis, the so-called j-scheme basis. In this connection

• we need to define the so-called 6j and 9j symbols

• as well as the the Wigner-Eckart theorem

We will also study some specific examples, like the calculation of the tensor force.
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Angular momentum algebra, Wigner-Eckart theorem
We define an irreducible spherical tensor Tλµ of rank λ as an operator with

2λ+ 1 components µ that satisfies the commutation relations (~ = 1)

[J±, Tλµ ] =
√

(λ∓ µ)(λ± µ+ 1)Tλµ±1,

and
[Jz, Tλµ ] = µTλµ .

Angular momentum algebra, Wigner-Eckart theorem
Our angular momentum coupled two-body wave function obeys clearly this

definition, namely

|(ab)JM〉 =
{
a†aa
†
b

}J
M
|Φ0〉 = Nab

∑
mamb

〈jamajbmb|JM〉|Φab〉,

is a tensor of rank J with M components. Another well-known example is given
by the spherical harmonics (see examples during today’s lecture).

The product of two irreducible tensor operators

Tλ3
µ3

=
∑
µ1µ2

〈λ1µ1λ2µ2|λ3µ3〉Tλ1
µ1
Tλ2
µ2

is also a tensor operator of rank λ3.

Angular momentum algebra, Wigner-Eckart theorem
We wish to apply the above definitions to the computations of a matrix element

〈ΦJM |Tλµ |ΦJ
′

M ′〉,

where we have skipped a reference to specific single-particle states. This is
the expectation value for two specific states, labelled by angular momenta J ′
and J . These states form an orthonormal basis. Using the properties of the
Clebsch-Gordan coefficients we can write

Tλµ |ΦJ
′

M ′〉 =
∑
J′′M ′′

〈λµJ ′M ′|J ′′M ′′〉|ΨJ′′

M ′′〉,

and assuming that states with different J and M are orthonormal we arrive at

〈ΦJM |Tλµ |ΦJ
′

M ′〉 = 〈λµJ ′M ′|JM〉〈ΦJM |ΨJ
M 〉.

Angular momentum algebra, Wigner-Eckart theorem
We need to show that

〈ΦJM |ΨJ
M 〉,

is independent of M . To show that

〈ΦJM |ΨJ
M 〉,

is independent of M , we use the ladder operators for angular momentum.
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Angular momentum algebra, Wigner-Eckart theorem
We have that

〈ΦJM+1|ΨJ
M+1〉 = ((J −M)(J +M + 1))−1/2 〈Ĵ+ΦJM |ΨJ

M+1〉,

but this is also equal to

〈ΦJM+1|ΨJ
M+1〉 = ((J −M)(J +M + 1))−1/2 〈ΦJM |Ĵ−ΨJ

M+1〉,

meaning that

〈ΦJM+1|ΨJ
M+1〉 = 〈ΦJM |ΨJ

M 〉 ≡ 〈ΦJM ||Tλ||ΦJ
′

M ′〉.

The double bars indicate that this expectation value is independent of the
projection M .

Angular momentum algebra, Wigner-Eckart theorem
The Wigner-Eckart theorem for an expectation value can then be written as

〈ΦJM |Tλµ |ΦJ
′

M ′〉 ≡ 〈λµJ ′M ′|JM〉〈ΦJ ||Tλ||ΦJ
′
〉.

The double bars indicate that this expectation value is independent of the
projection M . We can manipulate the Clebsch-Gordan coefficients using the
relations

〈λµJ ′M ′|JM〉 = (−1)λ+J′−J〈J ′M ′λµ|JM〉

and
〈J ′M ′λµ|JM〉 = (−1)J

′−M ′
√

2J + 1√
2λ+ 1

〈J ′M ′J −M |λ− µ〉,

together with the so-called 3j symbols. It is then normal to encounter the
Wigner-Eckart theorem in the form

〈ΦJM |Tλµ |ΦJ
′

M ′〉 ≡ (−1)J−M
(

J λ J ′

−M µ M ′

)
〈ΦJ ||Tλ||ΦJ

′
〉,

with the condition µ+M ′ −M = 0.

Angular momentum algebra, Wigner-Eckart theorem
The 3j symbols obey the symmetry relation(

j1 j2 j3
m1 m2 m3

)
= (−1)p

(
ja jb jc
ma mb mc

)
,

with (−1)p = 1 when the columns a, b, c are even permutations of the columns
1, 2, 3, p = j1 + j2 + j3 when the columns a, b, c are odd permtations of the
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columns 1, 2, 3 and p = j1 + j2 + j3 when all the magnetic quantum numbers mi

change sign. Their orthogonality is given by∑
j3m3

(2j3 + 1)
(

j1 j2 j3
m1 m2 m3

)(
j1 j2 j3
m1′ m2′ m3

)
= δm1m1′ δm2m2′ ,

and ∑
m1m2

(
j1 j2 j3
m1 m2 m3

)(
j1 j2 j3′

m1 m2 m3′

)
= 1

(2j3 + 1)δj3j3′ δm3m3′ .

Angular momentum algebra, Wigner-Eckart theorem
For later use, the following special cases for the Clebsch-Gordan and 3j symbols

are rather useful

〈JMJ ′M ′|00〉 = (−1)J−M√
2J + 1

δJJ ′δMM ′ .

and (
J&1 J
−M&0 M ′

)
= (−1)J−M M√

(2J + 1)(J + 1)
δMM ′ .

Angular momentum algebra, Wigner-Eckart theorem
Using 3j symbols we rewrote the Wigner-Eckart theorem as

〈ΦJM |Tλµ |ΦJ
′

M ′〉 ≡ (−1)J−M
(

J λ J ′

−M µ M ′

)
〈ΦJ ||Tλ||ΦJ

′
〉.

Multiplying from the left with the same 3j symbol and summing over M,µ,M ′

we obtain the equivalent relation

〈ΦJ ||Tλ||ΦJ
′
〉 ≡

∑
M,µ,M ′

(−1)J−M
(

J λ J ′

−M µ M ′

)
〈ΦJM |Tλµ |ΦJ

′

M ′〉,

where we used the orthogonality properties of the 3j symbols from the previous
page.

Angular momentum algebra, Wigner-Eckart theorem
This relation can in turn be used to compute the expectation value of some

simple reduced matrix elements like

〈ΦJ ||1||ΦJ
′
〉 =

∑
M,M ′

(−1)J−M
(

J 0 J ′

−M 0 M ′

)
〈ΦJM |1|ΦJ

′

M ′〉 =
√

2J + 1δJJ ′δMM ′ ,

where we used
〈JMJ ′M ′|00〉 = (−1)J−M√

2J + 1
δJJ ′δMM ′ .
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Angular momentum algebra, Wigner-Eckart theorem
Similarly, using(

J 1 J
−M 0 M ′

)
= (−1)J−M M√

(2J + 1)(J + 1)
δMM ′ ,

we have that

〈ΦJ ||J||ΦJ〉 =
∑
M,M ′

(−1)J−M
(

J 1 J ′

−M 0 M ′

)
〈ΦJM |jZ |ΦJ

′

M ′〉 =
√
J(J + 1)(2J + 1)

With the Pauli spin matrices σ and a state with J = 1/2, the reduced matrix
element

〈12 ||σ||
1
2 〉 =

√
6.

Before we proceed with further examples, we need some other properties of the
Wigner-Eckart theorem plus some additional angular momenta relations.

Angular momentum algebra, Wigner-Eckart theorem
The Wigner-Eckart theorem states that the expectation value for an irreducible

spherical tensor can be written as

〈ΦJM |Tλµ |ΦJ
′

M ′〉 ≡ 〈λµJ ′M ′|JM〉〈ΦJ ||Tλ||ΦJ
′
〉.

Since the Clebsch-Gordan coefficients themselves are easy to evaluate, the
interesting quantity is the reduced matrix element. Note also that the Clebsch-
Gordan coefficients limit via the triangular relation among λ, J and J ′ the
possible non-zero values.

From the theorem we see also that

〈ΦJM |Tλµ |ΦJ
′

M ′〉 = 〈λµJ ′M ′|JM〉〈
〈λµ0J ′M ′0|JM0〉〈

〈ΦJM0
|Tλµ0
|ΦJ

′

M ′
0
〉,

meaning that if we know the matrix elements for say some µ = µ0, M ′ = M ′0
and M = M0 we can calculate all other.

Angular momentum algebra, Wigner-Eckart theorem
If we look at the hermitian adjoint of the operator Tλµ , we see via the commu-

tation relations that (Tλµ )† is not an irreducible tensor, that is

[J±, (Tλµ )†] = −
√

(λ± µ)(λ∓ µ+ 1)(Tλµ∓1)†,

and
[Jz, (Tλµ )†] = −µ(Tλµ )†.
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The hermitian adjoint (Tλµ )† is not an irreducible tensor. As an example, consider
the spherical harmonics for l = 1 and ml = ±1. These functions are

Y l=1
ml=1(θ, φ) = −

√
3

8π sin (θ) exp ıφ,

and

Y l=1
ml=−1(θ, φ) =

√
3

8π sin (θ) exp−ıφ,

Angular momentum algebra, Wigner-Eckart theorem
It is easy to see that the Hermitian adjoint of these two functions

[
Y l=1
ml=1(θ, φ)

]† = −
√

3
8π sin (θ) exp−ıφ,

and [
Y l=1
ml=−1(θ, φ)

]† =
√

3
8π sin (θ) exp ıφ,

do not behave as a spherical tensor. However, the modified quantity

T̃λµ = (−1)λ+µ(Tλ−µ)†,

does satisfy the above commutation relations.

Angular momentum algebra, Wigner-Eckart theorem
With the modified quantity

T̃λµ = (−1)λ+µ(Tλ−µ)†,

we can then define the expectation value

〈ΦJM |Tλµ |ΦJ
′

M ′〉† = 〈λµJ ′M ′|JM〉〈ΦJ ||Tλ||ΦJ
′
〉∗,

since the Clebsch-Gordan coefficients are real. The rhs is equivalent with

〈λµJ ′M ′|JM〉〈ΦJ ||Tλ||ΦJ
′
〉∗ = 〈ΦJ

′

M ′ |(Tλµ )†|ΦJM 〉,

which is equal to

〈ΦJ
′

M ′ |(Tλµ )†|ΦJM 〉 = (−1)−λ+µ〈λ− µJM |J ′M ′〉〈ΦJ
′
||T̃λ||ΦJ〉.
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Angular momentum algebra, Wigner-Eckart theorem
Let us now apply the theorem to some selected expectation values. In several

of the expectation values we will meet when evaluating explicit matrix elements,
we will have to deal with expectation values involving spherical harmonics. A
general central interaction can be expanded in a complete set of functions like
the Legendre polynomials, that is, we have an interaction, with rij = |ri − rj |,

v(rij) =
∞∑
ν=0

vν(rij)Pν(cos (θij),

with Pν being a Legendre polynomials

Pν(cos (θij) =
∑
µ

4π
2µ+ 1Y

ν∗
µ (Ωi)Y νµ (Ωj).

We will come back later to how we split the above into a contribution that
involves only one of the coordinates.

Angular momentum algebra, Wigner-Eckart theorem
This means that we will need matrix elements of the type

〈Y l
′
||Y λ||Y l〉.

We can rewrite the Wigner-Eckart theorem as

〈Y l
′
||Y λ||Y l〉 =

∑
mµ

〈λµlm|l′m′〉Y λµ Y lm,

This equation is true for all values of θ and φ. It must also hold for θ = 0.

Angular momentum algebra, Wigner-Eckart theorem
We have

〈Y l
′
||Y λ||Y l〉 =

∑
mµ

〈λµlm|l′m′〉Y λµ Y lm,

and for θ = 0, the spherical harmonic

Y lm(θ = 0, φ) =
√

2l + 1
4π δm0,

which results in

〈Y l
′
||Y λ||Y l〉 =

{
(2l + 1)(2λ+ 1)

4π(2l′ + 1)

}1/2
〈λ0l0|l′0〉.
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Angular momentum algebra, Wigner-Eckart theorem
Till now we have mainly been concerned with the coupling of two angular

momenta ja and jb to a final angular momentum J . If we wish to describe a three-
body state with a final angular momentum J , we need to couple three angular
momenta, say the two momenta ja, jb to a third one jc. The coupling order is
important and leads to a less trivial implementation of the Pauli principle. With
three angular momenta there are obviously 3! ways by which we can combine the
angular momenta. In m-scheme a three-body Slater determinant is represented
as (say for the case of 19O, three neutrons outside the core of 16O),

|19O〉 = |(abc)M〉 = a†aa
†
ba
†
c|16O〉 = |Φabc〉.

The Pauli principle is automagically implemented via the anti-commutation
relations.

Angular momentum algebra, Wigner-Eckart theorem
However, when we deal the same state in an angular momentum coupled basis,
we need to be a little bit more careful. We can namely couple the states as
follows

|([ja → jb]Jab → jc)J〉 =
∑

mambmc

〈jamajbmb|JabMab〉〈JabMabjcmc|JM〉|jama〉⊗|jbmb〉⊗|jcmc〉 ,

that is, we couple first ja to jb to yield an intermediate angular momentum Jab,
then to jc yielding the final angular momentum J .

Angular momentum algebra, Wigner-Eckart theorem
Now, nothing hinders us from recoupling this state by coupling jb to jc, yielding
an intermediate angular momentum Jbc and then couple this angular momentum
to ja, resulting in the final angular momentum J ′.

That is, we can have

|(ja → [jb → jc]Jbc)J〉 =
∑

m′
am

′
b
m′

c

〈jbm′bjcm′c|JbcMbc〉〈jam′aJbcMbc|J ′M ′〉|Φabc〉.

We will always assume that we work with orthornormal states, this means that
when we compute the overlap betweem these two possible ways of coupling
angular momenta, we get

〈(ja → [jb → jc]Jbc)J ′M ′|([ja → jb]Jab → jc)JM〉 =δJJ ′δMM ′

∑
mambmc

〈jamajbmb|JabMab〉〈JabMabjcmc|JM〉

(2)
× 〈jbmbjcmc|JbcMbc〉〈jamaJbcMbc|JM〉.

(3)
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Angular momentum algebra, Wigner-Eckart theorem
We use then the latter equation to define the so-called 6j-symbols

〈(ja → [jb → jc]Jbc)J ′M ′|([ja → jb]Jab → jc)JM〉 = δJJ ′δMM ′

∑
mambmc

〈jamajbmb|JabMab〉〈JabMabjcmc|JM〉(4)

×〈jbmbjcmc|JbcMbc〉〈jamaJbcMbc|JM〉

= (−1)ja+jb+jc+J
√

(2Jab + 1)(2Jbc + 1)
{
ja jb Jab
jc J Jbc

}
,

where the symbol in curly brackets is the 6j symbol. A specific coupling
order has to be respected in the symbol, that is, the so-called triangular relations
between three angular momenta needs to be respected, that is{

x x x
} {

x
x x

} {
x

x x

} {
x

x x

}
Angular momentum algebra, Wigner-Eckart theorem
The 6j symbol is invariant under the permutation of any two columns{

j1 j2 j3
j4 j5 j6

}
=
{
j2 j1 j3
j5 j4 j6

}
=
{
j1 j3 j2
j4 j6 j5

}
=
{
j3 j2 j1
j6 j5 j4

}
.

The 6j symbol is also invariant if upper and lower arguments are interchanged
in any two columns{

j1 j2 j3
j4 j5 j6

}
=
{
j4 j5 j3
j1 j2 j6

}
=
{
j1 j5 j6
j4 j2 j3

}
=
{
j4 j2 j6
j1 j5 j3

}
.

Testing properties of 6j symbols
The above properties of 6j symbols can again be tested using the symbolic

python package wigner. Let us test the invariance{
j1 j2 j3
j4 j5 j6

}
=
{
j2 j1 j3
j5 j4 j6

}
.

The following program tests this relation for the case of j1 = 3/2, j2 = 3/2,
j3 = 3, j4 = 1/2, j5 = 1/2, j6 = 1

from sympy import S
from sympy.physics.wigner import wigner_6j
# Twice the values of all js
j1 = 3
j2 = 5
j3 = 2
j4 = 3
j5 = 5
j6 = 1
""" The triangular relation has to be fulfilled """
print wigner_6j(S(j1)/2, S(j2)/2, j3, S(j4)/2, S(j5)/2, j6)
""" Swapping columns 1 <==> 2 """
print wigner_6j(S(j2)/2, S(j1)/2, j3, S(j5)/2, S(j4)/2, j6)
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Angular momentum algebra, Wigner-Eckart theorem
The 6j symbols satisfy this orthogonality relation∑
j3

(2j3 + 1)
{
j1 j2 j3
j4 j5 j6

}{
j1 j2 j3
j4 j5 j′6

}
=

δj6j
′
6

2j6 + 1{j1, j5, j6}{j4, j2, j6}.

The symbol {j1j2j3} (called the triangular delta) is equal to one if the triad
(j1j2j3) satisfies the triangular conditions and zero otherwise. A useful value is
given when say one of the angular momenta are zero, say Jbc = 0, then we have{

ja jb Jab
jc J 0

}
= (−1)ja+jb+JabδJja

δjcjb√
(2ja + 1)(2jb + 1)

Angular momentum algebra, Wigner-Eckart theorem
With the 6j symbol defined, we can go back and and rewrite the overlap between
the two ways of recoupling angular momenta in terms of the 6j symbol. That is,
we can have

|(ja → [jb → jc]Jbc)JM〉 =
∑
Jab

(−1)ja+jb+jc+J
√

(2Jab + 1)(2Jbc + 1)
{
ja jb Jab
jc J Jbc

}
|([ja → jb]Jab → jc)JM〉.

Can you find the inverse relation? These relations can in turn be used to write
out the fully anti-symmetrized three-body wave function in a J-scheme coupled
basis. If you opt then for a specific coupling order, say |([ja → jb]Jab → jc)JM〉,
you need to express this representation in terms of the other coupling possibilities.

Angular momentum algebra, Wigner-Eckart theorem
Note that the two-body intermediate state is assumed to be antisymmetric but

not normalized, that is, the state which involves the quantum numbers ja and
jb. Assume that the intermediate two-body state is antisymmetric. With this
coupling order, we can rewrite ( in a schematic way) the general three-particle
Slater determinant as

Φ(a, b, c) = A|([ja → jb]Jab → jc)J〉,

with an implicit sum over Jab. The antisymmetrization operator A is used
here to indicate that we need to antisymmetrize the state. Challenge: Use
the definition of the 6j symbol and find an explicit expression for the above
three-body state using the coupling order |([ja → jb]Jab → jc)J〉.

Angular momentum algebra, Wigner-Eckart theorem
We can also coupled together four angular momenta. Consider two four-body

states, with single-particle angular momenta ja, jb, jc and jd we can have a state
with final J

|Φ(a, b, c, d)〉1 = |([ja → jb]Jab × [jc → jd]Jcd)JM〉,

26



where we read the coupling order as ja couples with jb to given and intermediate
angular momentum Jab. Moreover, jc couples with jd to given and intermediate
angular momentum Jcd. The two intermediate angular momenta Jab and Jcd are
in turn coupled to a final J . These operations involved three Clebsch-Gordan
coefficients.

Alternatively, we could couple in the following order

|Φ(a, b, c, d)〉2 = |([ja → jc]Jac × [jb → jd]Jbd)JM〉,

Angular momentum algebra, Wigner-Eckart theorem
The overlap between these two states

〈([ja → jc]Jac × [jb → jd]Jbd)JM |([ja → jb]Jab × [jc → jd]Jcd)JM〉,

is equal to∑
miMij

〈jamajbmb|JabMab〉〈jcmcjdmd|JcdMcd〉〈JabMabJcdMcd|JM〉

×〈jamajcmc|JacMac〉〈jbmbjdmd|JcdMbd〉〈JacMacJbdMbd|JM〉 (5)

=
√

(2Jab + 1)(2Jcd + 1)(2Jac + 1)(2Jbd + 1)

 ja jb Jab
jc jd Jcd
Jac Jbd J

 ,

with the symbol in curly brackets {} being the 9j-symbol. We see that a 6j
symbol involves four Clebsch-Gordan coefficients, while the 9j symbol involves
six.

Angular momentum algebra, Wigner-Eckart theorem
A 9j symbol is invariant under reflection in either diagonalj1 j2 j3

j4 j5 j6
j7 j8 j9

 =

j1 j4 j7
j2 j5 j8
j3 j6 j9

 =

j9 j6 j3
j8 j5 j2
j7 j4 j1

 .

The permutation of any two rows or any two columns yields a phase factor
(−1)S , where

S =
9∑
i=1

ji.

As an example we havej1 j2 j3
j4 j5 j6
j7 j8 j9

 = (−1)S
j4 j5 j6
j1 j2 j3
j7 j8 j9

 = (−1)S
j2 j1 j3
j5 j4 j6
j8 j7 j9

 .
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Angular momentum algebra, Wigner-Eckart theorem
A useful case is when say J = 0 in ja jb Jab
jc jd Jcd
Jac Jbd 0

 = δJabJcd
δJacJbd√

(2Jab + 1)(2Jac + 1)
(−1)jb+Jab+jc+Jac

{
ja jb Jab
jd jc Jac

}
.

Angular momentum algebra, Wigner-Eckart theorem
The tensor operator in the nucleon-nucleon potential is given by

〈lSJ |S12|l′S′J〉 = (−)S+J
√

30(2l + 1)(2l′ + 1)(2S + 1)(2S′ + 1)

×
{
J S′ l′

2 l S

}(
l′ 2 l
0 0 0

) s1 s2 S
s3 s4 S′

1 1 2


×〈s1||σ1||s3〉〈s2||σ2||s4〉,

and it is zero for the 1S0 wave.
How do we get here?

Angular momentum algebra, Wigner-Eckart theorem
To derive the expectation value of the nuclear tensor force, we recall that the

product of two irreducible tensor operators is

W r
mr

=
∑
mpmq

〈pmpqmq|rmr〉T pmp
Uqmq

,

and using the orthogonality properties of the Clebsch-Gordan coefficients we can
rewrite the above as

T pmp
Uqmq

=
∑
mpmq

〈pmpqmq|rmr〉W r
mr
.

Assume now that the operators T and U act on different parts of say a wave
function. The operator T could act on the spatial part only while the operator
U acts only on the spin part. This means also that these operators commute.
The reduced matrix element of this operator is thus, using the Wigner-Eckart
theorem,

〈(jajb)J ||W r||(jcjd)J ′〉 ≡
∑

M,mr,M ′

(−1)J−M
(

J r J ′

−M mr M ′

)

×〈(jajbJM |
[
T pmp

Uqmq

]r
mr

|(jcjd)J ′M ′〉.
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Angular momentum algebra, Wigner-Eckart theorem
Starting with

〈(jajb)J ||W r||(jcjd)J ′〉 ≡
∑

M,mr,M ′

(−1)J−M
(

J r J ′

−M mr M ′

)

×〈(jajbJM |
[
T pmp

Uqmq

]r
mr

|(jcjd)J ′M ′〉,

we assume now that T acts only on ja and jc and that U acts only on jb and
jd. The matrix element 〈(jajbJM |

[
T pmp

Uqmq

]r
mr

|(jcjd)J ′M ′〉 can be written out,
when we insert a complete set of states |jimijjmj〉〈jimijjmj | between T and U
as

〈(jajbJM |
[
T pmp

Uqmq

]r
mr

|(jcjd)J ′M ′〉 =
∑
mi

〈pmpqmq|rmr〉〈jamajbmb|JM〉〈jcmcjdmd|J ′M ′〉

×〈(jamajbmb|
[
T pmp

]r
mr

|(jcmcjbmb)〉〈(jcmcjbmb|
[
Uqmq

]r
mr

|(jcmcjdmd)〉.

The complete set of states that was inserted between T and U reduces to
|jcmcjbmb〉〈jcmcjbmb| due to orthogonality of the states.

Angular momentum algebra, Wigner-Eckart theorem
Combining the last two equations from the previous slide and and applying

the Wigner-Eckart theorem, we arrive at (rearranging phase factors)

〈(jajb)J ||W r||(jcjd)J ′〉 =
√

(2J + 1)(2r + 1)(2J ′ + 1)
∑

miM,M ′

(
J r J ′

−M mr M ′

)

×
(

ja jb J
ma mb −M

)(
jc jd J ′

−mc −md M ′

)(
p q r
−mp −mq mr

)
×
(

ja jc p
ma −mc −mp

)(
jb jd q
mb −md −mq

)
〈ja||T p||jc〉 × 〈jb||Uq||jd〉

which can be rewritten in terms of a 9j symbol as

〈(jajb)J ||W r||(jcjd)J ′〉 =
√

(2J + 1)(2r + 1)(2J ′ + 1)〈ja||T p||jc〉〈jb||Uq||jd〉

 ja jb J
jc jd J ′

p q r

 .

Angular momentum algebra, Wigner-Eckart theorem
From this expression we can in turn compute for example the spin-spin operator

of the tensor force.
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In case r = 0, that is we two tensor operators coupled to a scalar, we can use
(with p = q) ja jb J

jc jd J ′

p p 0

 = δJJ ′δpq√
(2J + 1)(2J + 1)

(−1)jb+jc+2J
{
ja jb J
jd jc p

}
,

and obtain

〈(jajb)J ||W 0||(jcjd)J ′〉 = (−1)jb+jc+2J〈ja||T p||jc〉〈jb||Up||jd〉
{
ja jb J
jd jc p

}
.

Angular momentum algebra, Wigner-Eckart theorem
Another very useful expression is the case where the operators act in just one

space. We state here without showing that the reduced matrix element

〈ja||W r||jb〉 = 〈ja|| [T p × T q]r ||jb〉 = (−1)ja+jb+r√2r + 1
∑
jc

{
jb ja r
p q jc

}
×〈ja||T p||jc〉〈jc||T q||jb〉.

Angular momentum algebra, Wigner-Eckart theorem
The tensor operator in the nucleon-nucleon potential can be written as

V = 3
r2

[
[σ1 ⊗ σ2](2) ⊗ [r⊗ r](2)

](0)

0

Since the irreducible tensor [r⊗ r](2) operates only on the angular quantum
numbers and [σ1 ⊗ σ2](2) operates only on the spin states we can write the matrix
element

〈lSJ |V |lSJ〉 = 〈lSJ |
[
[σ1 ⊗ σ2](2) ⊗ [r⊗ r](2)

](0)

0
|l′S′J〉

= (−1)J+l+S
{

l S J
l′ S′ 2

}
〈l|| [r⊗ r](2) ||l′〉

×〈S|| [σ1 ⊗ σ2](2) ||S′〉

Angular momentum algebra, Wigner-Eckart theorem
We need that the coordinate vector r can be written in terms of spherical

components as

rα = r

√
4π
3 Y1α

Using this expression we get

[r⊗ r](2)
µ = 4π

3 r2
∑
α,β

〈1α1β|2µ〉Y1αY1β
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Angular momentum algebra, Wigner-Eckart theorem
The product of two spherical harmonics can be written as

Yl1m1Yl2m2 =
∑
lm

√
(2l1 + 1)(2l2 + 1)(2l + 1)

4π

(
l1 l2 l
m1 m2 m

)

×
(
l1 l2 l
0 0 0

)
Yl−m(−1)m.

Angular momentum algebra, Wigner-Eckart theorem
Using this relation we get

[r⊗ r](2)
µ =

√
4πr2

∑
lm

∑
α,β

〈1α1β|2µ〉

×〈1α1β|l −m〉 (−1)1−1−m
√

2l + 1

(
1 1 l
0 0 0

)
Yl−m(−1)m

=
√

4πr2
(

1 1 2
0 0 0

)
Y2−µ

=
√

4πr2
√

2
15Y2−µ

Angular momentum algebra, Wigner-Eckart theorem
We can then use this relation to rewrite the reduced matrix element containing

the position vector as

〈l|| [r⊗ r](2) ||l′〉 =
√

4π
√

2
15r

2〈l||Y2||l′〉

=
√

4π
√

2
15r

2(−1)l
√

(2l + 1)5(2l′ + 1)
4π

(
l 2 l′

0 0 0

)

Angular momentum algebra, Wigner-Eckart theorem
Using the reduced matrix element of the spin operators defined as

〈S|| [σ1 ⊗ σ2](2) ||S′〉 =
√

(2S + 1)(2S′ + 1)5

 s1 s2 S
s3 s4 S′

1 1 2


× 〈s1||σ1||s3〉〈s2||σ2||s4〉
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and inserting these expressions for the two reduced matrix elements we get

〈lSJ |V |l′S′J〉 = (−1)S+J
√

30(2l + 1)(2l′ + 1)(2S + 1)(2S′ + 1)

×
{

l S J
l′ S 2

}(
l 2 l′

0 0 0

) s1 s2 S
s3 s4 S′

1 1 2


×〈s1||σ1||s3〉〈s2||σ2||s4〉.

Angular momentum algebra, Wigner-Eckart theorem
Normally, we start we a nucleon-nucleon interaction fitted to reproduce scat-

tering data. It is common then to represent this interaction in terms relative
momenta k, the center-of-mass momentum K and various partial wave quantum
numbers like the spin S, the total relative angular momentum J , isospin T and
relative orbital momentum l and finally the corresponding center-of-mass L. We
can then write the free interaction matrix V as

〈kKlLJ ST |V̂ |k′Kl′LJ S′T 〉.

Transformations from the relative and center-of-mass motion system to the lab
system will be discussed below.

Angular momentum algebra, Wigner-Eckart theorem
To obtain a V -matrix in a h.o. basis, we need the transformation

〈nNlLJ ST |V̂ |n′N ′l′L′J S′T 〉,

with n and N the principal quantum numbers of the relative and center-of-mass
motion, respectively.

|nlNLJ ST 〉 =
∫
k2K2dkdKRnl(

√
2αk)RNL(

√
1/2αK)|klKLJ ST 〉.

The parameter α is the chosen oscillator length.

Angular momentum algebra, Wigner-Eckart theorem
The most commonly employed sp basis is the harmonic oscillator, which in

turn means that a two-particle wave function with total angular momentum J
and isospin T can be expressed as

|(nalaja)(nblbjb)JT 〉 = 1√
(1 + δ12)

∑
λSJ

∑
nNlL

F × 〈ab|λSJ〉

×(−1)λ+J−L−S λ̂

{
L l λ
S J J

}
×〈nlNL|nalanblb〉 |nlNLJ ST 〉,

where the term 〈nlNL|nalanblb〉 is the so-called Moshinsky-Talmi transformation
coefficient (see chapter 18 of Alex Brown’s notes).
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Angular momentum algebra, Wigner-Eckart theorem
The term 〈ab|LSJ〉 is a shorthand for the LS − jj transformation coefficient,

〈ab|λSJ〉 = ĵaĵbλ̂Ŝ

 la sa ja
lb sb jb
λ S J

 .

Here we use x̂ =
√

2x+ 1. The factor F is defined as F = 1−(−1)l+S+T

√
2 if sa = sb

and we .

Angular momentum algebra, Wigner-Eckart theorem
The V̂ -matrix in terms of harmonic oscillator wave functions reads

〈(ab)JT |V̂ |(cd)JT 〉 =
∑

λλ′SS′J

∑
nln′l′NN ′L

(
1− (−1)l+S+T )√
(1 + δab)(1 + δcd)

×〈ab|λSJ〉〈cd|λ′S′J〉 〈nlNL|nalanblbλ〉 〈n′l′NL|nclcndldλ′〉

×Ĵ (−1)λ+λ′+l+l′
{
L l λ
S J J

}{
L l′ λ′

S J J

}
×〈nNlLJ ST |V̂ |n′N ′l′L′J S′T 〉.

The label a represents here all the single particle quantum numbers nalaja.
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