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Quantum numbers

Outline
Discussion of single-particle and two-particle quantum
numbers, uncoupled and coupled schemes
Discussion of angular momentum recouplings and the
Wigner-Eckart theorem
Applications to specific operators like the nuclear two-body
tensor force

For quantum numbers, chapter 1 on angular momentum and
chapter 5 of Suhonen and chapters 5, 12 and 13 of Alex Brown.
For a discussion of isospin, see for example Alex Brown’s lecture
notes chapter 12, 13 and 19.

Motivation
When solving the Hartree-Fock project using a nucleon-nucleon
interaction in an uncoupled basis (m-scheme), we found a high level
of degeneracy. One sees clear from the table here that we have a
degeneracy in the angular momentum j , resulting in 2j + 1 states
with the same energy. This reflects the rotational symmetry and
spin symmetry of the nuclear forces.

Quantum numbers Energy [MeV]
0sπ1/2 -40.4602
0sπ1/2 -40.4602
0sν1/2 -40.6426
0sν1/2 -40.6426
0pπ1/2 -6.7133
0pπ1/2 -6.7133
0pν1/2 -6.8403
0pν1/2 -6.8403
0pπ3/2 -11.5886
0pπ3/2 -11.5886
0pπ3/2 -11.5886
0pπ3/2 -11.5886
0pν3/2 -11.7201
0pν3/2 -11.7201
0pν3/2 -11.7201
0pν3/2 -11.7201

We observe that with increasing value of j the degeneracy
increases. For j = 3/2 we end up diagonalizing the same matrix
four times. With increasing value of j , it is rather obvious that our
insistence on using an uncoupled scheme (or just m-scheme) will
lead to unnecessary labor from our side (or more precisely, for the
computer). The obvious question we should pose ourselves then is
whether we can use the underlying symmetries of the nuclear forces
in order to reduce our efforts.

Single-particle and two-particle quantum numbers
In order to understand the basics of the nucleon-nucleon interaction
and the pertaining symmetries, we need to define the relevant
quantum numbers and how we build up a single-particle state and a
two-body state, and obviously our final holy grail, a many-boyd
state.

For the single-particle states, due to the fact that we have the
spin-orbit force, the quantum numbers for the projection of
orbital momentum l , that is ml , and for spin s, that is ms , are
no longer so-called good quantum numbers. The total angular
momentum j and its projection mj are then so-called good
quantum numbers.
This means that the operator Ĵ2 does not commute with L̂z or
Ŝz .
We also start normally with single-particle state functions
defined using say the harmonic oscillator. For these functions,
we have no explicit dependence on j . How can we introduce
single-particle wave functions which have j and its projection
mj as quantum numbers?

Single-particle and two-particle quantum numbers, brief
review on angular momenta etc

We have that the operators for the orbital momentum are given by

Lx = −i~(y
∂

∂z
− z

∂

∂y
) = ypz − zpy ,

Ly = −i~(z
∂

∂x
− x

∂

∂z
) = zpx − xpz ,

Lz = −i~(x
∂

∂y
− y

∂

∂x
) = xpy − ypx .

Single-particle and two-particle quantum numbers, brief
review on angular momenta etc

Since we have a spin orbit force which is strong, it is easy to show
that the total angular momentum operator

Ĵ = L̂ + Ŝ

does not commute with L̂z and Ŝz . To see this, we calculate for
example

[L̂z , Ĵ
2] = [L̂z , (L̂ + Ŝ)2] (1)

= [L̂z , L̂
2 + Ŝ2 + 2L̂Ŝ ]

= [L̂z , L̂Ŝ ] = [L̂z , L̂x Ŝx + L̂y Ŝy + L̂z Ŝz ] 6= 0,

since we have that [L̂z , L̂x ] = i~L̂y and [L̂z , L̂y ] = i~L̂x .



Single-particle and two-particle quantum numbers, brief
review on angular momenta etc

We have also
|Ĵ| = ~

√
J(J + 1),

with the the following degeneracy

MJ = −J,−J + 1, . . . , J − 1, J.

With a given value of L and S we can then determine the possible
values of J by studying the z component of Ĵ. It is given by

Ĵz = L̂z + Ŝz .

The operators L̂z and Ŝz have the quantum numbers Lz = ML~
and Sz = MS~, respectively, meaning that

MJ~ = ML~ + MS~,

or
MJ = ML + MS .

Since the max value of ML is L and for MS is S we obtain

(MJ)maks = L + S .

Single-particle and two-particle quantum numbers, brief
review on angular momenta etc

For nucleons we have that the maximum value of MS = ms = 1/2,
yielding

(mj)max = l +
1
2
.

Using this and the fact that the maximum value of MJ = mj is j we
have

j = l +
1
2
, l − 1

2
, l − 3

2
, l − 5

2
, . . .

To decide where this series terminates, we use the vector inequality

|L̂ + Ŝ | ≥
∣∣∣|L̂| − |Ŝ |

∣∣∣ .

Single-particle and two-particle quantum numbers, brief
review on angular momenta etc

Using Ĵ = L̂ + Ŝ we get

|Ĵ| ≥ |L̂| − |Ŝ |,

or
|Ĵ| = ~

√
J(J + 1) ≥ |~

√
L(L + 1)− ~

√
S(S + 1)|.

Single-particle and two-particle quantum numbers, brief
review on angular momenta etc

If we limit ourselves to nucleons only with s = 1/2 we find that

|Ĵ| = ~
√
j(j + 1) ≥ |~

√
l(l + 1)− ~

√
1
2

(
1
2

+ 1)|.

It is then easy to show that for nucleons there are only two possible
values of j which satisfy the inequality, namely

j = l +
1
2

or j = l − 1
2
,

and with l = 0 we get

j =
1
2
.

Single-particle and two-particle quantum numbers, brief
review on angular momenta etc

Let us study some selected examples. We need also to keep in mind
that parity is conserved. The strong and electromagnetic
Hamiltonians conserve parity. Thus the eigenstates can be broken
down into two classes of states labeled by their parity π = +1 or
π = −1. The nuclear interactions do not mix states with different
parity.
For nuclear structure the total parity originates from the intrinsic
parity of the nucleon which is πintrinsic = +1 and the parities
associated with the orbital angular momenta πl = (−1)l . The
total parity is the product over all nucleons
π =

∏
i πintrinsic(i)πl(i) =

∏
i (−1)li

The basis states we deal with are constructed so that they conserve
parity and have thus a definite parity.
Note that we do have parity violating processes, more on this later
although our focus will be mainly on non-parity viloating processes

Single-particle and two-particle quantum numbers

Consider now the single-particle orbits of the 1s0d shell. For a 0d
state we have the quantum numbers l = 2, ml = −2,−1, 0, 1, 2,
s + 1/2, ms = ±1/2, n = 0 (the number of nodes of the wave
function). This means that we have positive parity and

j =
3
2

= l − s mj = −3
2
,−1

2
,
1
2
,
3
2
.

and
j =

5
2

= l + s mj = −5
2
,−3

2
,−1

2
,
1
2
,
3
2
,
5
2
.



Single-particle and two-particle quantum numbers

Our single-particle wave functions, if we use the harmonic oscillator,
do however not contain the quantum numbers j and mj . Normally
what we have is an eigenfunction for the one-body problem defined
as

φnlml sms (r , θ, φ) = Rnl(r)Ylml
(θ, φ)ξsms ,

where we have used spherical coordinates (with a spherically
symmetric potential) and the spherical harmonics

Ylml
(θ, φ) = P(θ)F (φ) =

√
(2l + 1)(l −ml)!

4π(l + ml)!
Pml
l (cos(θ)) exp (imlφ),

with Pml
l being the so-called associated Legendre polynomials.

Single-particle and two-particle quantum numbers

Examples are

Y00 =

√
1
4π
,

for l = ml = 0,

Y10 =

√
3
4π

cos(θ),

for l = 1 and ml = 0,

Y1±1 =

√
3
8π

sin(θ)exp(±iφ),

for l = 1 and ml = ±1,

Y20 =

√
5

16π
(3cos2(θ)− 1)

for l = 2 and ml = 0 etc.

Single-particle and two-particle quantum numbers

How can we get a function in terms of j and mj? Define now

φnlml sms (r , θ, φ) = Rnl(r)Ylml
(θ, φ)ξsms ,

and
ψnjmj ;lml sms (r , θ, φ),

as the state with quantum numbers jmj . Operating with

ĵ2 = (l̂ + ŝ)2 = l̂2 + ŝ2 + 2l̂z ŝz + l̂+ŝ− + l̂−ŝ+,

on the latter state we will obtain admixtures from possible
φnlml sms (r , θ, φ) states.

Single-particle and two-particle quantum numbers
To see this, we consider the following example and fix

j =
3
2

= l − s mj =
3
2
.

and
j =

5
2

= l + s mj =
3
2
.

It means we can have, with l = 2 and s = 1/2 being fixed, in order
to have mj = 3/2 either ml = 1 and ms = 1/2 or ml = 2 and
ms = −1/2. The two states

ψn=0j=5/2mj=3/2;l=2s=1/2

and
ψn=0j=3/2mj=3/2;l=2s=1/2

will have admixtures from φn=0l=2ml=2s=1/2ms=−1/2 and
φn=0l=2ml=1s=1/2ms=1/2. How do we find these admixtures? Note
that we don’t specify the values of ml and ms in the functions ψ
since ĵ2 does not commute with L̂z and Ŝz .

Single-particle and two-particle quantum numbers

We operate with

ĵ2 = (l̂ + ŝ)2 = l̂2 + ŝ2 + 2l̂z ŝz + l̂+ŝ− + l̂−ŝ+

on the two jmj states, that is

ĵ2ψn=0j=5/2mj=3/2;l=2s=1/2 = α~2[l(l+1)+
3
4

+2mlms ]φn=0l=2ml=2s=1/2ms=−1/2+

β~2
√
l(l + 1)−ml(ml − 1)φn=0l=2ml=1s=1/2ms=1/2,

and

ĵ2ψn=0j=3/2mj=3/2;l=2s=1/2 = α~2[l(l+1)+
3
4

+2mlms ]+φn=0l=2ml=1s=1/2ms=1/2+

β~2
√
l(l + 1)−ml(ml + 1)φn=0l=2ml=2s=1/2ms=−1/2.

Single-particle and two-particle quantum numbers
This means that the eigenvectors φn=0l=2ml=2s=1/2ms=−1/2 etc are
not eigenvectors of ĵ2. The above problems gives a 2× 2 matrix
that mixes the vectors ψn=0j=5/2mj3/2;l=2ml s=1/2ms

and
ψn=0j=3/2mj3/2;l=2ml s=1/2ms

with the states
φn=0l=2ml=2s=1/2ms=−1/2 and φn=0l=2ml=1s=1/2ms=1/2. The
unknown coefficients α and β are the eigenvectors of this matrix.
That is, inserting all values ml , l ,ms , s we obtain the matrix

[
19/4 2
2 31/4

]

whose eigenvectors are the columns of
[
2/
√
5 1/

√
5

1/
√
5 −2/

√
5

]

These numbers define the so-called Clebsch-Gordan coupling
coefficients (the overlaps between the two basis sets). We can thus
write

ψnjmj ;ls =
∑

mlms

〈lmlsms |jmj〉φnlml sms ,

where the coefficients 〈lmlsms |jmj〉 are the so-called
Clebsch-Gordan coeffficients.



Clebsch-Gordan coefficients

The Clebsch-Gordan coeffficients 〈lmlsms |jmj〉 have some
interesting properties for us, like the following orthogonality
relations

∑

m1m2

〈j1m1j2m2|JM〉〈j1m1j2m2|J ′M ′〉 = δJ,J′δM,M′ ,

∑

JM

〈j1m1j2m2|JM〉〈j1m′1j2m′2|JM〉 = δm1,m′1
δm2,m′2

,

〈j1m1j2m2|JM〉 = (−1)j1+j2−J〈j2m2j1m1|JM〉,
and many others. The latter will turn extremely useful when we are
going to define two-body states and interactions in a coupled basis.

Clebsch-Gordan coefficients, testing the orthogonality
relations

The orthogonality relation can be tested using the symbolic python
package wigner. Let us test

∑

m1m2

〈j1m1j2m2|JM〉〈j1m1j2m2|J ′M ′〉 = δJ,J′δM,M′ ,

The following program tests this relation for the case of j1 = 3/2
and j2 = 3/2 meaning that m1 and m2 run from −3/2 to 3/2.
from sympy import S
from sympy.physics.wigner import clebsch_gordan
# Twice the values of j1 and j2
j1 = 3
j2 = 3
J = 2
Jp = 2
M = 2
Mp = 3
sum = 0.0
for m1 in range(-j1, j1+2, 2):

for m2 in range(-j2, j2+2, 2):
M = (m1+m2)/2.
""" Call j1, j2, J, m1, m2, m1+m2 """
sum += clebsch_gordan(S(j1)/2, S(j2)/2, J, S(m1)/2, S(m2)/2, M)*clebsch_gordan(S(j1)/2, S(j2)/2, Jp, S(m1)/2, S(m2)/2, Mp)

print sum

Quantum numbers and the Schroeodinger equation in
relative and CM coordinates

Summing up, for for the single-particle case, we have the following
eigenfunctions

ψnjmj ;ls =
∑

mlms

〈lmlsms |jmj〉φnlml sms ,

where the coefficients 〈lmlsms |jmj〉 are the so-called
Clebsch-Gordan coeffficients. The relevant quantum numbers are n
(related to the principal quantum number and the number of nodes
of the wave function) and

ĵ2ψnjmj ;ls = ~2j(j + 1)ψnjmj ;ls ,

ĵzψnjmj ;ls = ~mjψnjmj ;ls ,

l̂2ψnjmj ;ls = ~2l(l + 1)ψnjmj ;ls ,

ŝ2ψnjmj ;ls = ~2s(s + 1)ψnjmj ;ls ,

but sz and lz do not result in good quantum numbers in a basis
where we use the angular momentum j .

Quantum numbers and the Schroedinger equation in relative
and CM coordinates

For a two-body state where we couple two angular momenta j1 and
j2 to a final angular momentum J with projection MJ , we can
define a similar transformation in terms of the Clebsch-Gordan
coeffficients

ψ(j1j2)JMJ
=
∑

mj1mj2

〈j1mj1 j2mj2 |JMJ〉ψn1j1mj1 ;l1s1
ψn2j2mj2 ;l2s2

.

We will write these functions in a more compact form hereafter,
namely,

|(j1j2)JMJ〉 = ψ(j1j2)JMJ
,

and
|jimji 〉 = ψni jimji

;li si ,

where we have skipped the explicit reference to l , s and n. The
spin of a nucleon is always 1/2 while the value of l can be deduced
from the parity of the state. It is thus normal to label a state with
a given total angular momentum as jπ, where π = ±1.

Quantum numbers and the Schroedinger equation in relative
and CM coordinates

Our two-body state can thus be written as

|(j1j2)JMJ〉 =
∑

mj1mj2

〈j1mj1 j2mj2 |JMJ〉|j1mj1〉|j2mj2〉.

Due to the coupling order of the Clebsch-Gordan coefficient it reads
as j1 coupled to j2 to yield a final angular momentum J. If we
invert the order of coupling we would have

|(j2j1)JMJ〉 =
∑

mj1mj2

〈j2mj2 j1mj1 |JMJ〉|j1mj1〉|j2mj2〉,

and due to the symmetry properties of the Clebsch-Gordan
coefficient we have

|(j2j1)JMJ〉 = (−1)j1+j2−J
∑

mj1mj2

〈j1mj1 j2mj2 |JMJ〉|j1mj1〉|j2mj2〉 = (−1)j1+j2−J |(j1j2)JMJ〉.

We call the basis |(j1j2)JMJ〉 for the coupled basis, or just
j-coupled basis/scheme. The basis formed by the simple product of
single-particle eigenstates |j1mj1〉|j2mj2〉 is called the
uncoupled-basis, or just the m-scheme basis.

Quantum numbers

We have thus the coupled basis

|(j1j2)JMJ〉 =
∑

mj1mj2

〈j1mj1 j2mj2 |JMJ〉|j1mj1〉|j2mj2〉.

and the uncoupled basis

|j1mj1〉|j2mj2〉.

The latter can easily be generalized to many single-particle states
whereas the first needs specific coupling coefficients and definitions
of coupling orders. The m-scheme basis is easy to implement
numerically and is used in most standard shell-model codes. Our
coupled basis obeys also the following relations

Ĵ2|(j1j2)JMJ〉 = ~2J(J + 1)|(j1j2)JMJ〉

Ĵz |(j1j2)JMJ〉 = ~MJ |(j1j2)JMJ〉,



Components of the force and isospin

The nuclear forces are almost charge independent. If we assume
they are, we can introduce a new quantum number which is
conserved. For nucleons only, that is a proton and neutron, we can
limit ourselves to two possible values which allow us to distinguish
between the two particles. If we assign an isospin value of τ = 1/2
for protons and neutrons (they belong to an isospin doublet, in the
same way as we discussed the spin 1/2 multiplet), we can define
the neutron to have isospin projection τz = +1/2 and a proton to
have τz = −1/2. These assignements are the standard choices in
low-energy nuclear physics.

Isospin
This leads to the introduction of an additional quantum number
called isospin. We can define a single-nucleon state function in
terms of the quantum numbers n, j , mj , l , s, τ and τz . Using our
definitions in terms of an uncoupled basis, we had

ψnjmj ;ls =
∑

mlms

〈lmlsms |jmj〉φnlml sms ,

which we can now extend to

ψnjmj ;lsξττz =
∑

mlms

〈lmlsms |jmj〉φnlml sms ξττz ,

with the isospin spinors defined as

ξτ=1/2τz=+1/2 =

(
1
0

)
,

and

ξτ=1/2τz=−1/2 =

(
0
1

)
.

We can then define the proton state function as

ψp(r) = ψnjmj ;ls(r)
(

0
1

)
,

and similarly for neutrons as

ψn(r) = ψnjmj ;ls(r)
(

1
0

)
.

Isospin
We can in turn define the isospin Pauli matrices (in the same as we
define the spin matrices) as

τ̂x =

(
0 1
1 0

)
,

τ̂y =

(
0 −ı
ı 0

)
,

and

τ̂z =

(
1 0
0 −1

)
,

and operating with τ̂z on the proton state function we have

τ̂zψ
p(r) = −1

2
ψp(r),

and for neutrons we have

τ̂ψn(r) =
1
2
ψn(r).

Isospin

We can now define the so-called charge operator as

Q̂

e
=

1
2

(1− τ̂z) =

{
0 0
0 1

}
,

which results in
Q̂

e
ψp(r) = ψp(r),

and
Q̂

e
ψn(r) = 0,

as it should be.

Isospin

The total isospin is defined as

T̂ =
A∑

i=1

τ̂i ,

and its corresponding isospin projection as

T̂z =
A∑

i=1

τ̂zi ,

with eigenvalues T (T + 1) for T̂ and 1/2(N − Z ) for T̂z , where N
is the number of neutrons and Z the number of protons.
If charge is conserved, the Hamiltonian Ĥ commutes with T̂z and
all members of a given isospin multiplet (that is the same value of
T ) have the same energy and there is no Tz dependence and we
say that Ĥ is a scalar in isospin space.

Angular momentum algebra, Examples
We have till now seen the following definitions of a two-body
matrix elements with quantum numbers p = jpmp etc we have a
two-body state defined as

|(pq)M〉 = a†pa
†
q|Φ0〉,

where |Φ0〉 is a chosen reference state, say for example the Slater
determinant which approximates 16O with the 0s and the 0p shells
being filled, and M = mp + mq. Recall that we label single-particle
states above the Fermi level as abcd . . . and states below the Fermi
level for ijkl . . . . In case of two-particles in the single-particle states
a and b outside 16O as a closed shell core, say 18O, we would write
the representation of the Slater determinant as

|18O〉 = |(ab)M〉 = a†aa
†
b|16O〉 = |Φab〉.

In case of two-particles removed from say 16O, for example two
neutrons in the single-particle states i and j , we would write this as

|14O〉 = |(ij)M〉 = ajai |16O〉 = |Φij〉.



Angular momentum algebra and many-body states

For a one-hole-one-particle state we have

|16O〉1p1h = |(ai)M〉 = a†aai |16O〉 = |Φa
i 〉,

and finally for a two-particle-two-hole state we

|16O〉2p2h = |(abij)M〉 = a†aa
†
bajai |16O〉 = |Φab

ij 〉.

Angular momentum algebra, two-body state and
anti-symmetrized matrix elements

Let us go back to the case of two-particles in the single-particle
states a and b outside 16O as a closed shell core, say 18O. The
representation of the Slater determinant is

|18O〉 = |(ab)M〉 = a†aa
†
b|16O〉 = |Φab〉.

The anti-symmetrized matrix element is detailed as

〈(ab)M|V̂ |(cd)M〉 = 〈(jamajbmb)M = ma+mb|V̂ |(jcmc jdmd)M = ma+mb〉,

and note that anti-symmetrization means

〈(ab)M|V̂ |(cd)M〉 = −〈(ba)M|V̂ |(cd)M〉 = 〈(ba)M|V̂ |(dc)M〉,

〈(ab)M|V̂ |(cd)M〉 = −〈(ab)M|V̂ |(dc)M〉.

Angular momentum algebra, Wigner-Eckart theorem,
Examples

This matrix element is given by

〈16O|abaa
1
4

∑

pqrs

〈(pq)M|V̂ |(rs)M ′〉a†pa†qasara†ca†d |16O〉.

We can compute this matrix element using Wick’s theorem.

Angular momentum algebra, Wigner-Eckart theorem,
Examples

We have also defined matrix elements in the coupled basis, the
so-called J-coupled scheme. In this case the two-body wave
function for two neutrons outside 16O is written as

|18O〉J = |(ab)JM〉 =
{
a†aa
†
b

}J

M
|16O〉 = Nab

∑

mamb

〈jamajbmb|JM〉|Φab〉,

with
|Φab〉 = a†aa

†
b|16O〉.

We have now an explicit coupling order, where the angular
momentum ja is coupled to the angular momentum jb to yield a
final two-body angular momentum J. The normalization factor is

Nab =

√
1 + δab × (−1)J

1 + δab
.

Angular momentum algebra

We note that, using the anti-commuting properties of the creation
operators, we obtain

Nab

∑

mamb

〈jamajbmb|JM〉|Φab〉 = −Nab

∑

mamb

〈jamajbmb|JM〉|Φba〉.

Furthermore, using the property of the Clebsch-Gordan coefficient

〈jamajbmb|JM >= (−1)ja+jb−J〈jbmbjama|JM〉,

which can be used to show that

|(jbja)JM〉 =
{
a†ba
†
a

}J

M
|16O〉 = Nab

∑

mamb

〈jbmbjama|JM〉|Φba〉,

is equal to

|(jbja)JM〉 = (−1)ja+jb−J+1|(jajb)JM〉.

Angular momentum algebra, Wigner-Eckart theorem,
Examples

The implementation of the Pauli principle looks different in the
J-scheme compared with the m-scheme. In the latter, no two
fermions or more can have the same set of quantum numbers. In
the J-scheme, when we write a state with the shorthand

|18O〉J = |(ab)JM〉,

we do refer to the angular momenta only. This means that another
way of writing the last state is

|18O〉J = |(jajb)JM〉.

We will use this notation throughout when we refer to a two-body
state in J-scheme. The Kronecker δ function in the normalization
factor refers thus to the values of ja and jb. If two identical
particles are in a state with the same j-value, then only even values
of the total angular momentum apply. In the notation below, when
we label a state as jp it will actually represent all quantum numbers
except mp.



Angular momentum algebra, two-body matrix elements

The two-body matrix element is a scalar and since it obeys
rotational symmetry, it is diagonal in J, meaning that the
corresponding matrix element in J-scheme is

〈(jajb)JM|V̂ |(jc jd)JM〉 = NabNcd

∑

mambmcmd

〈jamajbmb|JM〉

×〈jcmc jdmd |JM〉〈(jamajbmb)M|V̂ |(jcmc jdmd)M〉,
and note that of the four m-values in the above sum, only three are
independent due to the constraint ma + mb = M = mc + md .

Angular momentum algebra, two-body matrix element

Since
|(jbja)JM〉 = (−1)ja+jb−J+1|(jajb)JM〉,

the anti-symmetrized matrix elements need now to obey the
following relations

〈(jajb)JM|V̂ |(jc jd)JM〉 = (−1)ja+jb−J+1〈(jbja)JM|V̂ |(jc jd)JM〉,

〈(jajb)JM|V̂ |(jc jd)JM〉 = (−1)jc+jd−J+1〈(jajb)JM|V̂ |(jd jc)JM〉,
〈(jajb)JM|V̂ |(jc jd)JM〉 = (−1)ja+jb+jc+jd 〈(jbja)JM|V̂ |(jd jc)JM〉 = 〈(jbja)JM|V̂ |(jd jc)JM〉,
where the last relations follows from the fact that J is an integer
and 2J is always an even number.

Angular momentum algebra, two-body matrix element
Using the orthogonality properties of the Clebsch-Gordan
coefficients,

∑

mamb

〈jamajbmb|JM〉〈jamajbmb|J ′M ′〉 = δJJ′δMM′ ,

and ∑

JM

〈jamajbmb|JM〉〈jam′ajbm′b|JM〉 = δmam′aδmbm
′
b
,

we can also express the two-body matrix element in m-scheme in
terms of that in J-scheme, that is, if we multiply with

∑

JMJ′M′
〈jam′ajbm′b|JM〉〈jcm′c jdm′d |J ′M ′〉

from left in

〈(jajb)JM|V̂ |(jc jd)JM〉 = NabNcd

∑

mambmcmd

〈jamajbmb|JM〉〈jcmc jdmd |JM〉

×〈(jamajbmb)M|V̂ |(jcmc jdmd)M〉,
we obtain

〈(jamajbmb)M|V̂ |(jcmc jdmd)M〉 =
1

NabNcd

∑

JM

〈jamajbmb|JM〉〈jcmc jdmd |JM〉

×〈(jajb)JM|V̂ |(jc jd)JM〉.

The Hartree-Fock potential

We can now use the above relations to compute the Hartre-Fock
energy in j-scheme. In m-scheme we defined the Hartree-Fock
energy as

εHF
pq = δpqεp +

∑

i≤F
〈pi |V̂ |qi〉AS ,

where the single-particle states pqi point to the quantum numbers
in m-scheme. For a state with for example j = 5/2, this results in
six identical values for the above potential. We would obviously like
to reduce this to one only by rewriting our equations in j-scheme.
Our Hartree-Fock basis is orthogonal by definition, meaning that we
have

εHF
p = εp +

∑

i≤F
〈pi |V̂ |pi〉AS ,

The Hartree-Fock potential

We have
εHF
p = εp +

∑

i≤F
〈pi |V̂ |pi〉AS ,

where the single-particle states p = [np, jp,mp, tzp ]. Let us assume
that p is a state above the Fermi level. The quantity εp could
represent the harmonic oscillator single-particle energies.
Let p → a.
The energies, as we have seen, are independent of ma and mi . We
sum now over all ma on both sides of the above equation and
divide by 2ja + 1, recalling that

∑
ma

= 2ja + 1. This results in

εHF
a = εa +

1
2ja + 1

∑

i≤F

∑

ma

〈ai |V̂ |ai〉AS ,

The Hartree-Fock potential
We rewrite

εHF
a = εa +

1
2ja + 1

∑

i≤F

∑

ma

〈ai |V̂ |ai〉AS ,

as

εHF
a = εa +

1
2ja + 1

∑

ni ,ji ,tzi≤F

∑

mima

〈(jamajimi )M|V̂ |(jamajimi )M〉AS ,

where we have suppressed the dependence on np and tz in the
matrix element. Using the definition

〈(jamajbmb)M|V̂ |(jcmc jdmd)M〉 =
1

NabNcd

∑

JM

〈jamajbmb|JM〉〈jcmc jdmd |JM〉〈(jajb)J|V̂ |(jc jd)M〉AS ,

with the orthogonality properties of Glebsch-Gordan coefficients
and that the j-coupled two-body matrix element is a scalar and
independent of M we arrive at

εHF
a = εa +

1
2ja + 1

∑

ji≤F

∑

J

(2J + 1)〈(jaji )J|V̂ |(jaji )M〉AS ,



First order in the potential energy

In a similar way it is easy to show that the potential energy
contribution to the ground state energy in m-scheme

1
2

∑

ij≤F
〈(jimi jjmj)M|V̂ |(jimi jjmj)M〉AS ,

can be rewritten as

1
2

∑

ji ,jj≤F

∑

J

(2J + 1)〈(ji jj)J|V̂ |(ji jj)J〉AS ,

This reduces the number of floating point operations with an order
of magnitude on average.

Angular momentum algebra

We are now going to define two-body and many-body states in an
angular momentum coupled basis, the so-called j-scheme basis. In
this connection

we need to define the so-called 6j and 9j symbols
as well as the the Wigner-Eckart theorem

We will also study some specific examples, like the calculation of
the tensor force.

Angular momentum algebra, Wigner-Eckart theorem

We define an irreducible spherical tensor Tλ
µ of rank λ as an

operator with 2λ+ 1 components µ that satisfies the commutation
relations (~ = 1)

[J±,Tλ
µ ] =

√
(λ∓ µ)(λ± µ+ 1)Tλ

µ±1,

and
[Jz ,T

λ
µ ] = µTλ

µ .

Angular momentum algebra, Wigner-Eckart theorem

Our angular momentum coupled two-body wave function obeys
clearly this definition, namely

|(ab)JM〉 =
{
a†aa
†
b

}J

M
|Φ0〉 = Nab

∑

mamb

〈jamajbmb|JM〉|Φab〉,

is a tensor of rank J with M components. Another well-known
example is given by the spherical harmonics (see examples during
today’s lecture).
The product of two irreducible tensor operators

Tλ3
µ3

=
∑

µ1µ2

〈λ1µ1λ2µ2|λ3µ3〉Tλ1
µ1
Tλ2
µ2

is also a tensor operator of rank λ3.

Angular momentum algebra, Wigner-Eckart theorem

We wish to apply the above definitions to the computations of a
matrix element

〈ΦJ
M |Tλ

µ |ΦJ′
M′〉,

where we have skipped a reference to specific single-particle states.
This is the expectation value for two specific states, labelled by
angular momenta J ′ and J. These states form an orthonormal
basis. Using the properties of the Clebsch-Gordan coefficients we
can write

Tλ
µ |ΦJ′

M′〉 =
∑

J′′M′′
〈λµJ ′M ′|J ′′M ′′〉|ΨJ′′

M′′〉,

and assuming that states with different J and M are orthonormal
we arrive at

〈ΦJ
M |Tλ

µ |ΦJ′
M′〉 = 〈λµJ ′M ′|JM〉〈ΦJ

M |ΨJ
M〉.

Angular momentum algebra, Wigner-Eckart theorem

We need to show that
〈ΦJ

M |ΨJ
M〉,

is independent of M. To show that

〈ΦJ
M |ΨJ

M〉,

is independent of M, we use the ladder operators for angular
momentum.



Angular momentum algebra, Wigner-Eckart theorem

We have that

〈ΦJ
M+1|ΨJ

M+1〉 = ((J −M)(J + M + 1))−1/2 〈Ĵ+ΦJ
M |ΨJ

M+1〉,

but this is also equal to

〈ΦJ
M+1|ΨJ

M+1〉 = ((J −M)(J + M + 1))−1/2 〈ΦJ
M |Ĵ−ΨJ

M+1〉,

meaning that

〈ΦJ
M+1|ΨJ

M+1〉 = 〈ΦJ
M |ΨJ

M〉 ≡ 〈ΦJ
M ||Tλ||ΦJ′

M′〉.

The double bars indicate that this expectation value is independent
of the projection M.

Angular momentum algebra, Wigner-Eckart theorem
The Wigner-Eckart theorem for an expectation value can then be
written as

〈ΦJ
M |Tλ

µ |ΦJ′
M′〉 ≡ 〈λµJ ′M ′|JM〉〈ΦJ ||Tλ||ΦJ′〉.

The double bars indicate that this expectation value is independent
of the projection M. We can manipulate the Clebsch-Gordan
coefficients using the relations

〈λµJ ′M ′|JM〉 = (−1)λ+J′−J〈J ′M ′λµ|JM〉

and

〈J ′M ′λµ|JM〉 = (−1)J
′−M′

√
2J + 1√
2λ+ 1

〈J ′M ′J −M|λ− µ〉,

together with the so-called 3j symbols. It is then normal to
encounter the Wigner-Eckart theorem in the form

〈ΦJ
M |Tλ

µ |ΦJ′
M′〉 ≡ (−1)J−M

(
J λ J ′

−M µ M ′

)
〈ΦJ ||Tλ||ΦJ′〉,

with the condition µ+ M ′ −M = 0.

Angular momentum algebra, Wigner-Eckart theorem

The 3j symbols obey the symmetry relation
(

j1 j2 j3
m1 m2 m3

)
= (−1)p

(
ja jb jc
ma mb mc

)
,

with (−1)p = 1 when the columns a, b, c are even permutations of
the columns 1, 2, 3, p = j1 + j2 + j3 when the columns a, b, c are
odd permtations of the columns 1, 2, 3 and p = j1 + j2 + j3 when all
the magnetic quantum numbers mi change sign. Their
orthogonality is given by

∑

j3m3

(2j3+1)

(
j1 j2 j3
m1 m2 m3

)(
j1 j2 j3
m1′ m2′ m3

)
= δm1m1′ δm2m2′ ,

and

∑

m1m2

(
j1 j2 j3
m1 m2 m3

)(
j1 j2 j3′

m1 m2 m3′

)
=

1
(2j3 + 1)

δj3j3′ δm3m3′ .

Angular momentum algebra, Wigner-Eckart theorem

For later use, the following special cases for the Clebsch-Gordan
and 3j symbols are rather useful

〈JMJ ′M ′|00〉 =
(−1)J−M√
2J + 1

δJJ′δMM′ .

and
(

J&1 J
−M&0 M ′

)
= (−1)J−M

M√
(2J + 1)(J + 1)

δMM′ .

Angular momentum algebra, Wigner-Eckart theorem

Using 3j symbols we rewrote the Wigner-Eckart theorem as

〈ΦJ
M |Tλ

µ |ΦJ′
M′〉 ≡ (−1)J−M

(
J λ J ′

−M µ M ′

)
〈ΦJ ||Tλ||ΦJ′〉.

Multiplying from the left with the same 3j symbol and summing
over M, µ,M ′ we obtain the equivalent relation

〈ΦJ ||Tλ||ΦJ′〉 ≡
∑

M,µ,M′
(−1)J−M

(
J λ J ′

−M µ M ′

)
〈ΦJ

M |Tλ
µ |ΦJ′

M′〉,

where we used the orthogonality properties of the 3j symbols from
the previous page.

Angular momentum algebra, Wigner-Eckart theorem

This relation can in turn be used to compute the expectation value
of some simple reduced matrix elements like

〈ΦJ ||1||ΦJ′〉 =
∑

M,M′
(−1)J−M

(
J 0 J ′

−M 0 M ′

)
〈ΦJ

M |1|ΦJ′
M′〉 =

√
2J + 1δJJ′δMM′ ,

where we used

〈JMJ ′M ′|00〉 =
(−1)J−M√
2J + 1

δJJ′δMM′ .



Angular momentum algebra, Wigner-Eckart theorem

Similarly, using
(

J 1 J
−M 0 M ′

)
= (−1)J−M

M√
(2J + 1)(J + 1)

δMM′ ,

we have that

〈ΦJ ||J||ΦJ〉 =
∑

M,M′
(−1)J−M

(
J 1 J ′

−M 0 M ′

)
〈ΦJ

M |jZ |ΦJ′
M′〉 =

√
J(J + 1)(2J + 1)

With the Pauli spin matrices σ and a state with J = 1/2, the
reduced matrix element

〈1
2
||σ||1

2
〉 =
√
6.

Before we proceed with further examples, we need some other
properties of the Wigner-Eckart theorem plus some additional
angular momenta relations.

Angular momentum algebra, Wigner-Eckart theorem

The Wigner-Eckart theorem states that the expectation value for
an irreducible spherical tensor can be written as

〈ΦJ
M |Tλ

µ |ΦJ′
M′〉 ≡ 〈λµJ ′M ′|JM〉〈ΦJ ||Tλ||ΦJ′〉.

Since the Clebsch-Gordan coefficients themselves are easy to
evaluate, the interesting quantity is the reduced matrix element.
Note also that the Clebsch-Gordan coefficients limit via the
triangular relation among λ, J and J ′ the possible non-zero values.
From the theorem we see also that

〈ΦJ
M |Tλ

µ |ΦJ′
M′〉 =

〈λµJ ′M ′|JM〉〈
〈λµ0J ′M ′0|JM0〉〈

〈ΦJ
M0
|Tλ
µ0
|ΦJ′

M′0
〉,

meaning that if we know the matrix elements for say some µ = µ0,
M ′ = M ′0 and M = M0 we can calculate all other.

Angular momentum algebra, Wigner-Eckart theorem

If we look at the hermitian adjoint of the operator Tλ
µ , we see via

the commutation relations that (Tλ
µ )† is not an irreducible tensor,

that is

[J±, (Tλ
µ )†] = −

√
(λ± µ)(λ∓ µ+ 1)(Tλ

µ∓1)†,

and
[Jz , (T

λ
µ )†] = −µ(Tλ

µ )†.

The hermitian adjoint (Tλ
µ )† is not an irreducible tensor. As an

example, consider the spherical harmonics for l = 1 and ml = ±1.
These functions are

Y l=1
ml=1(θ, φ) = −

√
3
8π

sin (θ) exp ıφ,

and

Y l=1
ml=−1(θ, φ) =

√
3
8π

sin (θ) exp−ıφ,

Angular momentum algebra, Wigner-Eckart theorem

It is easy to see that the Hermitian adjoint of these two functions

[
Y l=1
ml=1(θ, φ)

]†
= −

√
3
8π

sin (θ) exp−ıφ,

and [
Y l=1
ml=−1(θ, φ)

]†
=

√
3
8π

sin (θ) exp ıφ,

do not behave as a spherical tensor. However, the modified quantity

T̃λ
µ = (−1)λ+µ(Tλ

−µ)†,

does satisfy the above commutation relations.

Angular momentum algebra, Wigner-Eckart theorem

With the modified quantity

T̃λ
µ = (−1)λ+µ(Tλ

−µ)†,

we can then define the expectation value

〈ΦJ
M |Tλ

µ |ΦJ′
M′〉† = 〈λµJ ′M ′|JM〉〈ΦJ ||Tλ||ΦJ′〉∗,

since the Clebsch-Gordan coefficients are real. The rhs is equivalent
with

〈λµJ ′M ′|JM〉〈ΦJ ||Tλ||ΦJ′〉∗ = 〈ΦJ′
M′ |(Tλ

µ )†|ΦJ
M〉,

which is equal to

〈ΦJ′
M′ |(Tλ

µ )†|ΦJ
M〉 = (−1)−λ+µ〈λ− µJM|J ′M ′〉〈ΦJ′ ||T̃λ||ΦJ〉.

Angular momentum algebra, Wigner-Eckart theorem

Let us now apply the theorem to some selected expectation values.
In several of the expectation values we will meet when evaluating
explicit matrix elements, we will have to deal with expectation
values involving spherical harmonics. A general central interaction
can be expanded in a complete set of functions like the Legendre
polynomials, that is, we have an interaction, with rij = |ri − rj |,

v(rij) =
∞∑

ν=0

vν(rij)Pν(cos (θij),

with Pν being a Legendre polynomials

Pν(cos (θij) =
∑

µ

4π
2µ+ 1

Y ν∗
µ (Ωi )Y

ν
µ (Ωj).

We will come back later to how we split the above into a
contribution that involves only one of the coordinates.



Angular momentum algebra, Wigner-Eckart theorem

This means that we will need matrix elements of the type

〈Y l ′ ||Y λ||Y l〉.

We can rewrite the Wigner-Eckart theorem as

〈Y l ′ ||Y λ||Y l〉 =
∑

mµ

〈λµlm|l ′m′〉Y λ
µ Y

l
m,

This equation is true for all values of θ and φ. It must also hold for
θ = 0.

Angular momentum algebra, Wigner-Eckart theorem

We have
〈Y l ′ ||Y λ||Y l〉 =

∑

mµ

〈λµlm|l ′m′〉Y λ
µ Y

l
m,

and for θ = 0, the spherical harmonic

Y l
m(θ = 0, φ) =

√
2l + 1
4π

δm0,

which results in

〈Y l ′ ||Y λ||Y l〉 =

{
(2l + 1)(2λ+ 1)

4π(2l ′ + 1)

}1/2

〈λ0l0|l ′0〉.

Angular momentum algebra, Wigner-Eckart theorem

Till now we have mainly been concerned with the coupling of two
angular momenta ja and jb to a final angular momentum J. If we
wish to describe a three-body state with a final angular momentum
J, we need to couple three angular momenta, say the two momenta
ja, jb to a third one jc . The coupling order is important and leads to
a less trivial implementation of the Pauli principle. With three
angular momenta there are obviously 3! ways by which we can
combine the angular momenta. In m-scheme a three-body Slater
determinant is represented as (say for the case of 19O, three
neutrons outside the core of 16O),

|19O〉 = |(abc)M〉 = a†aa
†
ba
†
c |16O〉 = |Φabc〉.

The Pauli principle is automagically implemented via the
anti-commutation relations.

Angular momentum algebra, Wigner-Eckart theorem

However, when we deal the same state in an angular momentum
coupled basis, we need to be a little bit more careful. We can
namely couple the states as follows

|([ja → jb]Jab → jc)J〉 =
∑

mambmc

〈jamajbmb|JabMab〉〈JabMabjcmc |JM〉|jama〉⊗|jbmb〉⊗|jcmc〉 ,

that is, we couple first ja to jb to yield an intermediate angular
momentum Jab, then to jc yielding the final angular momentum J.

Angular momentum algebra, Wigner-Eckart theorem
Now, nothing hinders us from recoupling this state by coupling jb
to jc , yielding an intermediate angular momentum Jbc and then
couple this angular momentum to ja, resulting in the final angular
momentum J ′.

That is, we can have

|(ja → [jb → jc ]Jbc)J〉 =
∑

m′am
′
bm
′
c

〈jbm′bjcm′c |JbcMbc〉〈jam′aJbcMbc |J ′M ′〉|Φabc〉.

We will always assume that we work with orthornormal states, this
means that when we compute the overlap betweem these two
possible ways of coupling angular momenta, we get

〈(ja → [jb → jc ]Jbc)J ′M ′|([ja → jb]Jab → jc)JM〉 =δJJ′δMM′
∑

mambmc

〈jamajbmb|JabMab〉〈JabMabjcmc |JM〉

(2)

× 〈jbmbjcmc |JbcMbc〉〈jamaJbcMbc |JM〉.
(3)

Angular momentum algebra, Wigner-Eckart theorem

We use then the latter equation to define the so-called 6j-symbols

〈(ja → [jb → jc ]Jbc)J ′M ′|([ja → jb]Jab → jc)JM〉 = δJJ′δMM′
∑

mambmc

〈jamajbmb|JabMab〉〈JabMabjcmc |JM〉(4)

×〈jbmbjcmc |JbcMbc〉〈jamaJbcMbc |JM〉

= (−1)ja+jb+jc+J
√

(2Jab + 1)(2Jbc + 1)

{
ja jb Jab
jc J Jbc

}
,

where the symbol in curly brackets is the 6j symbol. A specific
coupling order has to be respected in the symbol, that is, the
so-called triangular relations between three angular momenta needs
to be respected, that is
{

x x x
} {

x
x x

} {
x

x x

} {
x

x x

}



Angular momentum algebra, Wigner-Eckart theorem

The 6j symbol is invariant under the permutation of any two
columns
{
j1 j2 j3
j4 j5 j6

}
=

{
j2 j1 j3
j5 j4 j6

}
=

{
j1 j3 j2
j4 j6 j5

}
=

{
j3 j2 j1
j6 j5 j4

}
.

The 6j symbol is also invariant if upper and lower arguments are
interchanged in any two columns
{
j1 j2 j3
j4 j5 j6

}
=

{
j4 j5 j3
j1 j2 j6

}
=

{
j1 j5 j6
j4 j2 j3

}
=

{
j4 j2 j6
j1 j5 j3

}
.

Testing properties of 6j symbols

The above properties of 6j symbols can again be tested using the
symbolic python package wigner. Let us test the invariance

{
j1 j2 j3
j4 j5 j6

}
=

{
j2 j1 j3
j5 j4 j6

}
.

The following program tests this relation for the case of j1 = 3/2,
j2 = 3/2, j3 = 3, j4 = 1/2, j5 = 1/2, j6 = 1
from sympy import S
from sympy.physics.wigner import wigner_6j
# Twice the values of all js
j1 = 3
j2 = 5
j3 = 2
j4 = 3
j5 = 5
j6 = 1
""" The triangular relation has to be fulfilled """
print wigner_6j(S(j1)/2, S(j2)/2, j3, S(j4)/2, S(j5)/2, j6)
""" Swapping columns 1 <==> 2 """
print wigner_6j(S(j2)/2, S(j1)/2, j3, S(j5)/2, S(j4)/2, j6)

Angular momentum algebra, Wigner-Eckart theorem

The 6j symbols satisfy this orthogonality relation

∑

j3

(2j3+1)

{
j1 j2 j3
j4 j5 j6

}{
j1 j2 j3
j4 j5 j ′6

}
=

δj6j ′6
2j6 + 1

{j1, j5, j6}{j4, j2, j6}.

The symbol {j1j2j3} (called the triangular delta) is equal to one if
the triad (j1j2j3) satisfies the triangular conditions and zero
otherwise. A useful value is given when say one of the angular
momenta are zero, say Jbc = 0, then we have

{
ja jb Jab
jc J 0

}
=

(−1)ja+jb+JabδJjaδjc jb√
(2ja + 1)(2jb + 1)

Angular momentum algebra, Wigner-Eckart theorem

With the 6j symbol defined, we can go back and and rewrite the
overlap between the two ways of recoupling angular momenta in
terms of the 6j symbol. That is, we can have

|(ja → [jb → jc ]Jbc)JM〉 =
∑

Jab

(−1)ja+jb+jc+J
√

(2Jab + 1)(2Jbc + 1)

{
ja jb Jab
jc J Jbc

}
|([ja → jb]Jab → jc)JM〉.

Can you find the inverse relation? These relations can in turn be
used to write out the fully anti-symmetrized three-body wave
function in a J-scheme coupled basis. If you opt then for a specific
coupling order, say |([ja → jb]Jab → jc)JM〉, you need to express
this representation in terms of the other coupling possibilities.

Angular momentum algebra, Wigner-Eckart theorem

Note that the two-body intermediate state is assumed to be
antisymmetric but not normalized, that is, the state which involves
the quantum numbers ja and jb. Assume that the intermediate
two-body state is antisymmetric. With this coupling order, we can
rewrite ( in a schematic way) the general three-particle Slater
determinant as

Φ(a, b, c) = A|([ja → jb]Jab → jc)J〉,

with an implicit sum over Jab. The antisymmetrization operator A
is used here to indicate that we need to antisymmetrize the state.
Challenge: Use the definition of the 6j symbol and find an explicit
expression for the above three-body state using the coupling order
|([ja → jb]Jab → jc)J〉.

Angular momentum algebra, Wigner-Eckart theorem

We can also coupled together four angular momenta. Consider two
four-body states, with single-particle angular momenta ja, jb, jc and
jd we can have a state with final J

|Φ(a, b, c , d)〉1 = |([ja → jb]Jab × [jc → jd ]Jcd)JM〉,

where we read the coupling order as ja couples with jb to given and
intermediate angular momentum Jab. Moreover, jc couples with jd
to given and intermediate angular momentum Jcd . The two
intermediate angular momenta Jab and Jcd are in turn coupled to a
final J. These operations involved three Clebsch-Gordan
coefficients.
Alternatively, we could couple in the following order

|Φ(a, b, c , d)〉2 = |([ja → jc ]Jac × [jb → jd ]Jbd)JM〉,



Angular momentum algebra, Wigner-Eckart theorem

The overlap between these two states

〈([ja → jc ]Jac × [jb → jd ]Jbd)JM|([ja → jb]Jab × [jc → jd ]Jcd)JM〉,

is equal to
∑

miMij

〈jamajbmb|JabMab〉〈jcmc jdmd |JcdMcd〉〈JabMabJcdMcd |JM〉

×〈jamajcmc |JacMac〉〈jbmbjdmd |JcdMbd〉〈JacMacJbdMbd |JM〉 (5)

=
√

(2Jab + 1)(2Jcd + 1)(2Jac + 1)(2Jbd + 1)





ja jb Jab
jc jd Jcd
Jac Jbd J



 ,

with the symbol in curly brackets {} being the 9j-symbol. We see
that a 6j symbol involves four Clebsch-Gordan coefficients, while
the 9j symbol involves six.

Angular momentum algebra, Wigner-Eckart theorem

A 9j symbol is invariant under reflection in either diagonal



j1 j2 j3
j4 j5 j6
j7 j8 j9



 =




j1 j4 j7
j2 j5 j8
j3 j6 j9



 =




j9 j6 j3
j8 j5 j2
j7 j4 j1



 .

The permutation of any two rows or any two columns yields a
phase factor (−1)S , where

S =
9∑

i=1

ji .

As an example we have



j1 j2 j3
j4 j5 j6
j7 j8 j9



 = (−1)S




j4 j5 j6
j1 j2 j3
j7 j8 j9



 = (−1)S




j2 j1 j3
j5 j4 j6
j8 j7 j9



 .

Angular momentum algebra, Wigner-Eckart theorem

A useful case is when say J = 0 in




ja jb Jab
jc jd Jcd
Jac Jbd 0



 =

δJabJcd δJacJbd√
(2Jab + 1)(2Jac + 1)

(−1)jb+Jab+jc+Jac

{
ja jb Jab
jd jc Jac

}
.

Angular momentum algebra, Wigner-Eckart theorem

The tensor operator in the nucleon-nucleon potential is given by

〈lSJ|S12|l ′S ′J〉 = (−)S+J
√

30(2l + 1)(2l ′ + 1)(2S + 1)(2S ′ + 1)

×
{

J S ′ l ′

2 l S

}(
l ′ 2 l
0 0 0

)


s1 s2 S
s3 s4 S ′

1 1 2





×〈s1||σ1||s3〉〈s2||σ2||s4〉,

and it is zero for the 1S0 wave.
How do we get here?

Angular momentum algebra, Wigner-Eckart theorem
To derive the expectation value of the nuclear tensor force, we
recall that the product of two irreducible tensor operators is

W r
mr

=
∑

mpmq

〈pmpqmq|rmr 〉T p
mp

Uq
mq
,

and using the orthogonality properties of the Clebsch-Gordan
coefficients we can rewrite the above as

T p
mp

Uq
mq

=
∑

mpmq

〈pmpqmq|rmr 〉W r
mr
.

Assume now that the operators T and U act on different parts of
say a wave function. The operator T could act on the spatial part
only while the operator U acts only on the spin part. This means
also that these operators commute. The reduced matrix element of
this operator is thus, using the Wigner-Eckart theorem,

〈(jajb)J||W r ||(jc jd)J ′〉 ≡
∑

M,mr ,M′
(−1)J−M

(
J r J ′

−M mr M ′

)

×〈(jajbJM|
[
T p
mp

Uq
mq

]r
mr

|(jc jd)J ′M ′〉.

Angular momentum algebra, Wigner-Eckart theorem
Starting with

〈(jajb)J||W r ||(jc jd)J ′〉 ≡
∑

M,mr ,M′
(−1)J−M

(
J r J ′

−M mr M ′

)

×〈(jajbJM|
[
T p
mp

Uq
mq

]r
mr

|(jc jd)J ′M ′〉,

we assume now that T acts only on ja and jc and that U acts only
on jb and jd . The matrix element
〈(jajbJM|

[
T p
mpU

q
mq

]r
mr
|(jc jd)J ′M ′〉 can be written out, when we

insert a complete set of states |jimi jjmj〉〈jimi jjmj | between T and
U as

〈(jajbJM|
[
T p
mp

Uq
mq

]r
mr

|(jc jd)J ′M ′〉 =
∑

mi

〈pmpqmq|rmr 〉〈jamajbmb|JM〉〈jcmc jdmd |J ′M ′〉

×〈(jamajbmb|
[
T p
mp

]r
mr

|(jcmc jbmb)〉〈(jcmc jbmb|
[
Uq
mq

]r
mr

|(jcmc jdmd)〉.

The complete set of states that was inserted between T and U
reduces to |jcmc jbmb〉〈jcmc jbmb| due to orthogonality of the states.



Angular momentum algebra, Wigner-Eckart theorem

Combining the last two equations from the previous slide and and
applying the Wigner-Eckart theorem, we arrive at (rearranging
phase factors)

〈(jajb)J||W r ||(jc jd)J ′〉 =
√

(2J + 1)(2r + 1)(2J ′ + 1)
∑

miM,M′

(
J r J ′

−M mr M ′

)

×
(

ja jb J
ma mb −M

)(
jc jd J ′

−mc −md M ′

)(
p q r
−mp −mq mr

)

×
(

ja jc p
ma −mc −mp

)(
jb jd q
mb −md −mq

)
〈ja||T p||jc〉×〈jb||Uq||jd〉

which can be rewritten in terms of a 9j symbol as

〈(jajb)J||W r ||(jc jd)J ′〉 =
√

(2J + 1)(2r + 1)(2J ′ + 1)〈ja||T p||jc〉〈jb||Uq||jd〉





ja jb J
jc jd J ′

p q r



 .

Angular momentum algebra, Wigner-Eckart theorem

From this expression we can in turn compute for example the
spin-spin operator of the tensor force.
In case r = 0, that is we two tensor operators coupled to a scalar,
we can use (with p = q)




ja jb J
jc jd J ′

p p 0



 =

δJJ′δpq√
(2J + 1)(2J + 1)

(−1)jb+jc+2J
{
ja jb J
jd jc p

}
,

and obtain

〈(jajb)J||W 0||(jc jd)J ′〉 = (−1)jb+jc+2J〈ja||T p||jc〉〈jb||Up||jd〉
{
ja jb J
jd jc p

}
.

Angular momentum algebra, Wigner-Eckart theorem

Another very useful expression is the case where the operators act
in just one space. We state here without showing that the reduced
matrix element

〈ja||W r ||jb〉 = 〈ja|| [T p × T q]r ||jb〉 = (−1)ja+jb+r
√
2r + 1

∑

jc

{
jb ja r
p q jc

}

×〈ja||T p||jc〉〈jc ||T q||jb〉.

Angular momentum algebra, Wigner-Eckart theorem

The tensor operator in the nucleon-nucleon potential can be written
as

V =
3
r2

[
[σ1 ⊗ σ2](2) ⊗ [r ⊗ r](2)

](0)
0

Since the irreducible tensor [r ⊗ r](2) operates only on the angular
quantum numbers and [σ1 ⊗ σ2](2) operates only on the spin states
we can write the matrix element

〈lSJ|V |lSJ〉 = 〈lSJ|
[
[σ1 ⊗ σ2](2) ⊗ [r ⊗ r](2)

](0)
0
|l ′S ′J〉

= (−1)J+l+S

{
l S J
l ′ S ′ 2

}
〈l || [r ⊗ r](2) ||l ′〉

×〈S || [σ1 ⊗ σ2](2) ||S ′〉

Angular momentum algebra, Wigner-Eckart theorem

We need that the coordinate vector r can be written in terms of
spherical components as

rα = r

√
4π
3
Y1α

Using this expression we get

[r ⊗ r](2)µ =
4π
3
r2
∑

α,β

〈1α1β|2µ〉Y1αY1β

Angular momentum algebra, Wigner-Eckart theorem

The product of two spherical harmonics can be written as

Yl1m1Yl2m2 =
∑

lm

√
(2l1 + 1)(2l2 + 1)(2l + 1)

4π

(
l1 l2 l
m1 m2 m

)

×
(

l1 l2 l
0 0 0

)
Yl−m(−1)m.



Angular momentum algebra, Wigner-Eckart theorem

Using this relation we get

[r ⊗ r](2)µ =
√
4πr2

∑

lm

∑

α,β

〈1α1β|2µ〉

×〈1α1β|l −m〉(−1)1−1−m
√
2l + 1

(
1 1 l
0 0 0

)
Yl−m(−1)m

=
√
4πr2

(
1 1 2
0 0 0

)
Y2−µ

=
√
4πr2

√
2
15

Y2−µ

Angular momentum algebra, Wigner-Eckart theorem

We can then use this relation to rewrite the reduced matrix element
containing the position vector as

〈l || [r ⊗ r](2) ||l ′〉 =
√
4π

√
2
15

r2〈l ||Y2||l ′〉

=
√
4π

√
2
15

r2(−1)l
√

(2l + 1)5(2l ′ + 1)

4π

(
l 2 l ′

0 0 0

)

Angular momentum algebra, Wigner-Eckart theorem

Using the reduced matrix element of the spin operators defined as

〈S || [σ1 ⊗ σ2](2) ||S ′〉 =
√

(2S + 1)(2S ′ + 1)5





s1 s2 S
s3 s4 S ′

1 1 2





× 〈s1||σ1||s3〉〈s2||σ2||s4〉

and inserting these expressions for the two reduced matrix elements
we get

〈lSJ|V |l ′S ′J〉 = (−1)S+J
√

30(2l + 1)(2l ′ + 1)(2S + 1)(2S ′ + 1)

×
{

l S J
l ′ S 2

}(
l 2 l ′

0 0 0

)


s1 s2 S
s3 s4 S ′

1 1 2





×〈s1||σ1||s3〉〈s2||σ2||s4〉.

Angular momentum algebra, Wigner-Eckart theorem

Normally, we start we a nucleon-nucleon interaction fitted to
reproduce scattering data. It is common then to represent this
interaction in terms relative momenta k , the center-of-mass
momentum K and various partial wave quantum numbers like the
spin S , the total relative angular momentum J , isospin T and
relative orbital momentum l and finally the corresponding
center-of-mass L. We can then write the free interaction matrix V
as

〈kKlLJ ST |V̂ |k ′Kl ′LJ S ′T 〉.
Transformations from the relative and center-of-mass motion
system to the lab system will be discussed below.

Angular momentum algebra, Wigner-Eckart theorem

To obtain a V -matrix in a h.o. basis, we need the transformation

〈nNlLJ ST |V̂ |n′N ′l ′L′J S ′T 〉,

with n and N the principal quantum numbers of the relative and
center-of-mass motion, respectively.

|nlNLJ ST 〉 =

∫
k2K 2dkdKRnl(

√
2αk)RNL(

√
1/2αK )|klKLJ ST 〉.

The parameter α is the chosen oscillator length.

Angular momentum algebra, Wigner-Eckart theorem

The most commonly employed sp basis is the harmonic oscillator,
which in turn means that a two-particle wave function with total
angular momentum J and isospin T can be expressed as

|(nalaja)(nblbjb)JT 〉 =
1√

(1 + δ12)

∑

λSJ

∑

nNlL

F × 〈ab|λSJ〉

×(−1)λ+J−L−S λ̂
{

L l λ
S J J

}

×〈nlNL|nalanblb〉 |nlNLJ ST 〉,

where the term 〈nlNL|nalanblb〉 is the so-called Moshinsky-Talmi
transformation coefficient (see chapter 18 of Alex Brown’s notes).



Angular momentum algebra, Wigner-Eckart theorem

The term 〈ab|LSJ〉 is a shorthand for the LS − jj transformation
coefficient,

〈ab|λSJ〉 = ĵa ĵbλ̂Ŝ





la sa ja
lb sb jb
λ S J



 .

Here we use x̂ =
√
2x + 1. The factor F is defined as

F = 1−(−1)l+S+T
√

2
if sa = sb and we .

Angular momentum algebra, Wigner-Eckart theorem

The V̂ -matrix in terms of harmonic oscillator wave functions reads

〈(ab)JT |V̂ |(cd)JT 〉 =
∑

λλ′SS ′J

∑

nln′l ′NN′L

(
1− (−1)l+S+T

)
√

(1 + δab)(1 + δcd)

×〈ab|λSJ〉〈cd |λ′S ′J〉 〈nlNL|nalanblbλ〉
〈
n′l ′NL|nc lcnd ldλ′

〉

×Ĵ (−1)λ+λ
′+l+l ′

{
L l λ
S J J

}{
L l ′ λ′

S J J

}

×〈nNlLJ ST |V̂ |n′N ′l ′L′J S ′T 〉.
The label a represents here all the single particle quantum numbers
nalaja.


