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o Discussion of single-particle and two-particle quantum
numbers, uncoupled and coupled schemes

o Discussion of angular momentum recouplings and the
Wigner-Eckart theorem

o Applications to specific operators like the nuclear two-body
tensor force

For quantum numbers, chapter 1 on angular momentum and
chapter 5 of Suhonen and chapters 5, 12 and 13 of Alex Brown.
For a discussion of isospin, see for example Alex Brown's lecture
notes chapter 12, 13 and 19.

‘ Motivation

When solving the Hartree-Fock project using a nucleon-nucleon
interaction in an uncoupled basis (m-scheme), we found a high level
of degeneracy. One sees clear from the table here that we have a
degeneracy in the angular momentum j, resulting in 2j + 1 states
with the same energy. This reflects the rotational symmetry and
spin symmetry of the nuclear forces.

Quantum numbers  Energy [MeV]

057, -40.4602
0s7), -40.4602
0st), -40.6426
0sY), -40.6426
0p7/> -6.7133
0p7/> -6.7133
R
Pi/2 -6.84

UpQ;Z -11.5886
0p3/» -11.5886
0p3/» -11.5886
0p3/ -11.5886
0p%/ -11.7201

‘ Single-particle and two-particle quan

m numbers

In order to understand the basics of the nucleon-nucleon interaction
and the pertaining symmetries, we need to define the relevant
quantum numbers and how we build up a single-particle state and a
two-body state, and obviously our final holy grail, a many-boyd
state.

o For the single-particle states, due to the fact that we have the
spin-orbit force, the quantum numbers for the projection of
orbital momentum /, that is my, and for spin s, that is ms, are
no longer so-called good quantum numbers. The total angular
momentum j and its projection m; are then so-called good
quantum numbers.

This means that the operator J2 does not commute with L or
S,.
We also start normally with single-particle state functions
defined using say the harmonic oscillator. For these functions,
we have no explicit dependence on j. How can we introduce
single-particle wave functions which have j and its projection
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We have that the operators for the orbital momentum are given by
L, 0 19}
L= —ih(y 5~ — 287) = ypz — 2Py,

L0 7]
L, = *’h(za - XE) = ZPpx — XPz,

0 )
L= 7lh(x$ - ya) = Xpy — yPx-

Since we have a spin orbit force which is strong, it is easy to show
that the total angular momentum operator

J=0+5$

does not commute with £, and S,. To see this, we calculate for
example

(L, 7] = [L,(L+5)] 1)
= [L,,[?+ 8% +203]
= [L,18) = [, LS+ 1,5, + [.5.] # 0,

since we have that [l:Z7 [X] = ihzy and [I:z, [y] = ihl,.




Single-particle and two-particle quantum numbers, brief
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We have also N
[J] =hVJ(J+1),
with the the following degeneracy

My=—J,—J+1,...,0—1,J.

With a given value of L and S we can then determine the possible
values of J by studying the z component of J. It is given by

Jy=0,+6,.

The operators [, and §, have the quantum numbers L, = M, h
and S, = Msh, respectively, meaning that

M,k = MLk + Msh,

or
M., — M., & M-
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For nucleons we have that the maximum value of Ms = ms = 1/2,
yielding
1
(mj)max =/ + >
Using this and the fact that the maximum value of M; = mj is j we

have
1 3,75

=2,
2’ 2’ 2
To decide where this series terminates, we use the vector inequality

1
F= e = =
J +21

\£+§\z}|i|f\§\‘.
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Using + S we get
[ = |Z] - 18],

or

[l = /I +1) > [h/L{L+1) — h/S(S +1)].

If we limit ourselves to nucleons only with s = 1/2 we find that

= /JG D) 2 I/ 1)~ 2+ DL

It is then easy to show that for nucleons there are only two possible
values of j which satisfy the inequality, namely

1

1
j:/+§0rj:1—§,

and with / = 0 we get
.1
J*E»
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Let us study some selected examples. We need also to keep in mind
that parity is conserved. The strong and electromagnetic
Hamiltonians conserve parity. Thus the eigenstates can be broken
down into two classes of states labeled by their parity 7 = +1 or

m = —1. The nuclear interactions do not mix states with different
parity.

For nuclear structure the total parity originates from the intrinsic
parity of the nucleon which is Tiptrinsic = +1 and the parities
associated with the orbital angular momenta 7; = (—1)/ . The
total parity is the product over all nucleons

7 = T Fassnsie()mi(3) = [[H(~1)"

The basis states we deal with are constructed so that they conserve
parity and have thus a definite parity.

Note that we do have parity violating processes, more on this later
although our focus will be mainly on non-parity viloating processes

Consider now the single-particle orbits of the 1s0d shell. For a 0d
state we have the quantum numbers / =2, m; = —2,-1,0,1, 2,
s+1/2, mg==+1/2, n =0 (the number of nodes of the wave
function). This means that we have positive parity and

3 s go_3.113
I=5= U5tk
and
5 _,.s o 3 3 1135
I=5= =0y P yE




Single-particle and two-particle quantum numbers

Our single-particle wave functions, if we use the harmonic oscillator,
do however not contain the quantum numbers j and m;. Normally
what we have is an eigenfunction for the one-body problem defined
as

Drimysms (150, ) = Roi(r) Yim, (6, &)Esm,»

where we have used spherical coordinates (with a spherically
symmetric potential) and the spherical harmonics

21+ 1)(/ — m))!

Yim, (6, ¢) = P(0)F () = 4r(l+ my)!

P (cos(0)) exp (imi¢

with P/ being the so-called associated Legendre polynomials.

Single-particle and two-particle quantum numbers

How can we get a function in terms of j and m;? Define now

Drimysms (150, ) = Roi(r) Yim, (6, &)Esm, »
and
rimgimsm (726, 6),
as the state with quantum numbers jm;. Operating with
P=(+8)=P+82+25 + 15 +1 5,

on the latter state we will obtain admixtures from possible
Onimysm, (1,0, @) states.

um numbers

We operate with
P=0+s2=P+2+205+18 +13,
on the two jm; states, that is
P n—oj — a[(I41) 42
S Yn=0j=5/2m;=3/2;1=2s=1/2 = "[I(I+ )+4+ My Ms]Pn—oi=2m =25
BRI+ 1) = my(m; — 1)$n_o/—2m—15—1/2me=1/2>
and

> 3
f21l)n:0j:3/2m/:3/2,1:25:1/2 = ahz[l(I+1)+Z+2mlms]+¢n:01:2m,:1

1/2m,

—1/2/

BR2N/I(1+ 1) — my(my + 1) bn_gi—2m—25—1/2m——1/2-

Single-particle and two-particle quantum numbers

Examples are
for | =m; =0,

for /=1and m =0,
Vi = is'n((?)e (£ig)
11 =\ g xp(£ig),
for =1 and m = +1,
Yao = 1/ ——(3cos2(6) — 1)
2=\ 167

for I =2 and m; = 0 etc.

Single-particle and two-particle quantum numbers

To see this, we consider the following example and fix

j===1 s mj = -

J*zf VT
and

j===1I+s m; = -

J*2* VT

It means we can have, with / =2 and s = 1/2 being fixed, in order
to have m; = 3/2 either m; =1 and mg =1/2 or m; =2 and
ms = —1/2. The two states

Yn=0j=5/2m;=3/2;/=25=1/2

and
n=0j=3/2m;=3/2;1=2s=1/2
P X
will have admixtures from ¢,_o/—om—2s—1/2m,——1/2 and
®n=01=2m=15=1/2m,=1/2- How do we find these admixtures? Note
that we don't specify the values of m; and ms in the functions v

Single-particle and two-particle quantum numbers

This means that the eigenvectors ¢,—o/—om=2s=1/2m,=—1/2 etc are
not eigenvectors of j2. The above problems gives a 2 x 2 matrix
that mixes the vectors ¥,—oj—s5/2m;3/2;1=2ms=1/2m, and
Yn=0j=3/2m;3/2;1=2ms=1/2m, With the states
Or—0/=2m=25=1/2me=—1/2 aNd Pp—0/=2m,—=15=1/2m,—1/2- The
unknown coefficients « and 3 are the eigenvectors of this matrix.
That is, inserting all values my, I, ms, s we obtain the matrix

T

whose eigenvectors are the columns of

{2N§ 1/V5 ]
1/v/5 —2//5

These numbers define the so-called Clebsch-Gordan coupling
coefficients (the overlaps between the two basis sets). We can thus
write




‘ Clebsch-Gordan coefficients

The Clebsch-Gordan coeffficients (/m;sms|jm;) have some
interesting properties for us, like the following orthogonality
relations

> Gumijamal IM) (i mujoma| I M) = 6,y Sm s

i
> Grmajama| IMY i jamy| IM) = Sy ot S, s
IM

(j1mujama] JM) = (=12 Gamajimy [ IM),

and many others. The latter will turn extremely useful when we are
going to define two-body states and interactions in a coupled basis.

Quantum numbers and the Schroeodinger equation in

relative and CM coordinates

Summing up, for for the single-particle case, we have the following
eigenfunctions

Ynjmjsls = (Imisms|jmj) Gnimysm,
,

myms

where the coefficients (/m;sms|jm;) are the so-called
Clebsch-Gordan coeffficients. The relevant quantum numbers are n
(related to the principal quantum number and the number of nodes
of the wave function) and

Pnjmpits = B2 + 1) njmits,
JeUnjmyits = Bmjthnjm;iie,
Pipnjimyits = B2 + 1) njms

) 2 .
S 1/)ﬂjmj;/s =hs(s+ 1)1‘;‘),,1-,,,1;157

Quantum numbers and the Schroedinger equation in relative

and CM coordinates

Our two-body state can thus be written as
G2)IMy) = >~ Gamjjomy [IM) Lamy, ) amys ).
i ik

Due to the coupling order of the Clebsch-Gordan coefficient it reads
as j; coupled to j> to yield a final angular momentum J. If we
invert the order of coupling we would have

Gaj)IMy) = >~ Gomyppjumy, [IM)jamj,) oms),

itk ik

and due to the symmetry properties of the Clebsch-Gordan
coefficient we have

[Gafn)IMy) = (=127 N (amy, jomg, | IMY s mj, ) iamy,) = (1Y

My Mjp

Clebsch-Gordan coefficients, testing the orthogonality

relations

The orthogonality relation can be tested using the symbolic python
package wigner. Let us test

> Gumjamo| IM) (s jpma| S M') = 6 3 Opmars

mymz

The following program tests this relation for the case of j; = 3/2
and j» = 3/2 meaning that m; and my run from —3/2 to 3/2.

from sympy import S
from sympy.physics.wigner import clebsch_gordan
# Twice the values of jI1 and j2

il = &
j2-=3
J=2
Jp =2
M=2
Mp = 3

for ml in range(-j1, j1+2, 2):
for m2 in range(-j2, j2+2, 2):
M = (m1+m2)/2.
" Call j1, 52, J, ml, m2, mitm3 """

Quantum numbers and the Schroedinger equation in relative

and CM coordinates

For a two-body state where we couple two angular momenta j; and
J» to a final angular momentum J with projection M, we can
define a similar transformation in terms of the Clebsch-Gordan
coeffficients

V(i) M, = Z Urmjf2mpp [IM )Y jymyy shsy Ynajamyyilase -
i 115
We will write these functions in a more compact form hereafter,
namely,
|GLi2)IM) = sy am,
and
Uim/y> = w“fjimj,vlr517

where we have skipped the explicit reference to /, s and n. The

spin of a nucleon is always 1/2 while the value of / can be deduced
from the parity of the state. It is thus normal to label a state with

P | N

‘ Quantum numbers

We have thus the coupled basis

[Gu2)IMs) = >~ (jrmy jamy | IM) i my, ) jamy,).

iy ridy
and the uncoupled basis
Lirmj ) lizmj,)-

The latter can easily be generalized to many single-particle states
whereas the first needs specific coupling coefficients and definitions
of coupling orders. The m-scheme basis is easy to implement
numerically and is used in most standard shell-model codes. Our
coupled basis obeys also the following relations

P(jj2) IM,) = B2 I(J + 1)| (i) IM.)

J\Gai2)IMy) = B, |(juj2) IM,),




- Componentsof th frce and sspin

This leads to the introduction of an additional quantum number
called isospin. We can define a single-nucleon state function in
terms of the quantum numbers n, j, mj, I, s, 7 and 7. Using our

The nuclear forces are almost charge independent. If we assume definitions in terms of an uncoupled basis, we had

they are, we can introduce a new quantum number which is i

conserved. For nucleons only, that is a proton and neutron, we can Pnjmy;ls = Z (Imysms imj) Grtmysms
limit ourselves to two possible values which allow us to distinguish mims

between the two particles. If we assign an isospin value of 7 =1/2 welitdh we cm mew esand &

for protons and neutrons (they belong to an isospin doublet, in the

same way as we discussed the spin 1/2 multiplet), we can define Ynjmj;1s€rr, = Z (Imysmg|jm;) G nim smy&rrs s
the neutron to have isospin projection 7, = +1/2 and a proton to myms

have 7, = —1/2. These assignements are the standard choices in . . . .

low-energy nuclear physics, with the isospin spinors defined as

1
Er=1/2n=+1/2 = ( 0 ) 9

e . (0

and

‘ Isospin ‘ Isospin

We can in turn define the isospin Pauli matrices (in the same as we
define the spin matrices) as
N ( 01 ) We can now define the so-called charge operator as
Tx = )
10 N
Q_ 1(1 —f)= 00
) < 0 —2 > e 2 Z70 1)’
y = )
0 which results in .
e 1o L yo(r) = voe),
o= ( 0 -1 ) ¢
- and N
and operating with 7, on the proton state function we have Xyn(r) =0
- )
9P(r) = f%w”(r), as it should be.
and for neutrons we have
2o n 1 n
() = Z0"(r).

‘ Isospin ‘ Angular momentum algebra, Examples

We have till now seen the following definitions of a two-body
matrix elements with quantum numbers p = j,m, etc we have a
two-body state defined as

The total isospin is defined as

A
F=34,
; I(pg)M) = afa}|®o),
and its corresponding isospin projection as where |®g) is a chosen reference state, say for example the Slater
determinant which approximates 1°0 with the Os and the 0p shells
A A . being filled, and M = mj, + m,. Recall that we label single-particle
Tz= Z Zid states above the Fermi level as abcd ... and states below the Fermi

level for jjkl.... In case of two-particles in the single-particle states
a and b outside 190 as a closed shell core, say 80, we would write

with eigenvalues T(T + 1) for T and 1/2(N — Z) for T, where N
g ( ) /2( ) the representation of the Slater determinant as

is the number of neutrons and Z the number of protons.

If charge is conserved, the Hamiltonian A commutes with T, and 18 116 b
g A . ) z ['0) = |(ab)M) = ala}|*°0) = [®%).
all members of a given isospin multiplet (that is the same value of
T) have the same energy and there is no T dependence and we In case of two-particles removed from say 100, for example two
say that H is a scalar in isospin space. neutrons in the single-particle states i and j, we would write this as

aa — 16 .




‘ Angular momentum algebra and many-body states

For a one-hole-one-particle state we have

16, ; .16

[**0)1p1n = |(ai)M) = a}ai'®0) = [7),
and finally for a two-particle-two-hole state we

[*0)2p2n = |(abif)M) = afala;2;[1°0) = [®3).

Angular momentum algebra, Wigner-Eckart theorem,

‘ Angular momentum algebra, two-body state and

anti-symmetrized matrix elements

Let us go back to the case of two-particles in the single-particle
states a and b outside 10 as a closed shell core, say 180. The
representation of the Slater determinant is

[%0) = |(ab)M) = a[a}|*°0) = [0**).
The anti-symmetrized matrix element is detailed as
((@b)M|V|(cd)M) = ((jamajoms)M = ma+my|V|(jemejgma)M = ma+
and note that anti-symmetrization means

((ab)M|V|(cd)M) = —((ba)M|V|(cd)M) = {(ba)M|V|(dc)M),

((aB)M|V|(cd)M) = —((ab) M|V (dc) M).

Angular momentum algebra, Wigner-Eckart theorem,

Examples

This matrix element is given by

1 ~ "
(160\‘3[,331 Z((pq)M\ V|(rs)M')a{,aLasa,alaL\mO).

pars

We can compute this matrix element using Wick's theorem.

We note that, using the anti-commuting properties of the creation
operators, we obtain

Nap D Gamajoms|IM)[©%) = =Ny > (jamajomp| JM)|HP).

mamyp mamyp,
Furthermore, using the property of the Clebsch-Gordan coefficient
(amajomp| M >= (1)Y=~ jympjama| IM).

which can be used to show that

J
|Gefo) M) = {abal ) 1°0) = Noo 3 Uomaiama|JM)|657),

mamy

is equal to

|Gja) IM) = (=LY~ (jojp) IM).

Examples

We have also defined matrix elements in the coupled basis, the
so-called J-coupled scheme. In this case the two-body wave
function for two neutrons outside '°0 is written as

J
%0 = I(ab) M) = {alal} 11°0) = Nap 3 amajoms|JM) %),

mamy

with
b 16
|©%) = ala}|*°0).
We have now an explicit coupling order, where the angular
momentum j is coupled to the angular momentum Jj, to yield a
final two-body angular momentum J. The normalization factor is

\/ﬁ
Nyp = 14 8ap % ( 1)'

14025

Angular momentum algebra, Wigner-Eckart theorem,

Examples

The implementation of the Pauli principle looks different in the
J-scheme compared with the m-scheme. In the latter, no two
fermions or more can have the same set of quantum numbers. In
the J-scheme, when we write a state with the shorthand

[*80) ; = |(ab)IM),

we do refer to the angular momenta only. This means that another
way of writing the last state is

["80) s = |(jab) IM)-

We will use this notation throughout when we refer to a two-body
state in J-scheme. The Kronecker § function in the normalization
factor refers thus to the values of j, and jp. If two identical
particles are in a state with the same j-value, then only even values
of the total angular momentum apply. In the notation below, when
we label a state as i. it will actuallv represent all auantum numbers




Angular momentum algebra, two-body matrix elements

The two-body matrix element is a scalar and since it obeys
rotational symmetry, it is diagonal in J, meaning that the
corresponding matrix element in J-scheme is

(Uado) MV (jcja) IM) = NopNeg > (amajsmp| M)
.
 (jemejgmal IM)Y((jamajsmp) M|V |(je mcjgma) M),

and note that of the four m-values in the above sum, only three are
independent due to the constraint m, + mp = M = mc + mgy.

Angular momentum algebra, two-body matrix element

Using the orthogonality properties of the Clebsch-Gordan
coefficients,

S Gamajsmy|IM) (amajismp| J M) = 6 1 Spnrr,

mamy

and

> Gamajoms| IM) (amljis M| IM) = S,y Simyms s
™

we can also express the two-body matrix element in m-scheme in
terms of that in J-scheme, that is, if we multiply with

D Uambjomp | IM) Gemljamiy| M)
IMIM!

from left in

(Ui IM|V | eja) IM) = NapNea > (jamajismp| M) (jemejam

mampmemg

1

‘ Angular momentum algebra, two-body matrix element

Since o

[Uisfa) IM) = (=1Y 52 (o) IM),
the anti-symmetrized matrix elements need now to obey the
following relations

(Uads) M| V| (jeja) IM) = (1Y~ (o) IM| V| () IM)
(Uaf) IM| V| (jeja) IM) = (= LY=o ) IM| V| (jgje) IM),
(Uado) IM V| (jeja) IM) = (=LY (i o) IM| V| (jtje ) IM) = (na)

where the last relations follows from the fact that J is an integer
and 2J is always an even number.

‘ The Hartree-Fock potential

We have .

NP — e, + Z(Pi\V|Pf>As,

i<F

where the single-particle states p = [n, jp, Mp, tz,]. Let us assume
that p is a state above the Fermi level. The quantity ¢, could
represent the harmonic oscillator single-particle energies.
Let p — a.
The energies, as we have seen, are independent of m, and m;. We
sum now over all m, on both sides of the above equation and
divide by 2j, + 1, recalling that }° = 2j, + 1. This results in

1 5
HF _ L g .
P =t iy 5 T 6iVIa0e

‘ The Hartree-Fock potential

We can now use the above relations to compute the Hartre-Fock
energy in j-scheme. In m-scheme we defined the Hartree-Fock
energy as

HF oI

Epg = OpgEp + Z(P'W\Q'M&
i<F
where the single-particle states pgi point to the quantum numbers
in m-scheme. For a state with for example j = 5/2, this results in
six identical values for the above potential. We would obviously like
to reduce this to one only by rewriting our equations in j-scheme.
Our Hartree-Fock basis is orthogonal by definition, meaning that we
have
HF Ao
ept =cp+ > (pil V|pi)as,
i<F

‘ The Hartree-Fock potential

We rewrite

1 S o
et =ea+ WZZ@’W‘Q’MS,

i<F m,
as
; 1 . . N .
=t gy 2 O (Gamaim)MIVIGamajim)M) as,
a

N i, te; SF mima

where we have suppressed the dependence on n, and t; in the
matrix element. Using the definition

. . A . 1 . . . .
{(amajsmp)M|V|(jemejama)M) = —— > (jamajsmp| M) (jemcjgm
NabNea 4

with the orthogonality properties of Glebsch-Gordan coefficients
and that the j-coupled two-body matrix element is a scalar and
independent of M we arrive at

LS S @)+ 1) (i IV M) s,
+1j,§F 5

T




‘ First order in the potential energy

In a similar way it is easy to show that the potential energy
contribution to the ground state energy in m-scheme

1 o S
5 2 (Gimijym;)M|V|Gimjsm;) M) as.
ii<F
can be rewritten as
1 P
5 2 2+ )GV 1Gii) ) as:
Jii<F J

This reduces the number of floating point operations with an order
of magnitude on average.

im algebra, Wigner-Eckart theorem

‘ Angular momen

We define an irreducible spherical tensor T,i‘ of rank A as an
operator with 2\ + 1 components y that satisfies the commutation
relations (h = 1)

Ve, T = VOF 0O £ p+ DTy,

and
Yz, TRl = T

im algebra, Wigner-Eckart theorem

‘ Angular momen

We wish to apply the above definitions to the computations of a
matrix element
J T
(Ol T 1O,
where we have skipped a reference to specific single-particle states.
This is the expectation value for two specific states, labelled by
angular momenta J and J. These states form an orthonormal

basis. Using the properties of the Clebsch-Gordan coefficients we
can write

XU = > O M M) W),
fo

and assuming that states with different J and M are orthonormal
we arrive at

(PRI T ®R) = (A M| IM) (@7 [ W7y).

‘ Angular momentum algebra

We are now going to define two-body and many-body states in an
angular momentum coupled basis, the so-called j-scheme basis. In
this connection

o we need to define the so-called 6; and 9 symbols
o as well as the the Wigner-Eckart theorem

We will also study some specific examples, like the calculation of
the tensor force.

‘ Angular momentum algebra, Wigner-Eckart theorem

Our angular momentum coupled two-body wave function obeys
clearly this definition, namely

(b)) = {alal ) 100) = Ny 3 Gamaioms | I1)[0%),

mamy

is a tensor of rank J with M components. Another well-known
example is given by the spherical harmonics (see examples during
today's lecture).

The product of two irreducible tensor operators

T2 = (M dopo|Aaps) TR T2
Hiji2

is also a tensor operator of rank \3.

‘ Angular momentum algebra, Wigner-Eckart theorem

We need to show that
(@ulvin),

is independent of M. To show that
(MW,

is independent of M, we use the ladder operators for angular
momentum.




‘ Angular momentum algebra, Wigner-Eckart theorem ‘ Angular momentum algebra, Wigner-Eckart theorem

The Wigner-Eckart theorem for an expectation value can then be
written as
We have that ’ .
(OUI TR OM) = M M| IM) (&) T [67).
Ol Vigi) = (I = M)+ M+ 1)) (Jof, Wi, ),
RCEMEE « X ) (el Vi The double bars indicate that this expectation value is independent
but this is also equal to of the projection M. We can manipulate the Clebsch-Gordan

q f th jection M. W ipul he Clebsch-Gord
1 . coefficients using the relations
1 Viss) = (U = M) + M+ 1) 72 (o | T Wiy, ), )
A M| IM) = (=)= M A IM)
meaning that

and
(PhrsalViner) = (@1 W) = (Oul T O e
V2A+1

together with the so-called 3j symbols. It is then normal to
encounter the Wigner-Eckart theorem in the form

(I M A IM) = (—1) =M (I'M'J— MIA = p),

The double bars indicate that this expectation value is independent
of the projection M.

a
PNTEE N SR EPry Y A B S WO TR N

‘ Angular momentum algebra, Wigner-Eckart theorem ‘ Angular momentum algebra, Wigner-Eckart theorem

The 3/ symbols obey the symmetry relation

(]1 2 3 )Z(il)p< Ja Jb Je )
I R For later use, the following special cases for the Clebsch-Gordan

with (—1)P = 1 when the columns a, b, ¢ are even permutations of and 3/ symbols are rather useful
the columns 1,2,3, p = j; + j> + j3 when the columns a, b, ¢ are (—1)-M
odd permtations of the columns 1,2,3 and p = j; + j» + j3 when all (JMJ'M'|00) = ﬁ(g_/_]léMMh
the magnetic quantum numbers m; change sign. Their +
orthogonality is given by nd
. b 2 3 h o2 B J&1J et M
(A B BY(A B A it ( .
J;; my my ms my my ms mmy Emaimy ~M&0 M (1) RSO
and
Z h 2 I3 A 2 oJy \__ 1L 56
m M ms m my my (2j3 + 1) B
mymz

‘ Angular momen

m algebra, Wigner-Eckart theorem ‘ Angular momentum algebra, Wigner-Eckart theorem

Using 3/ symbols we rewrote the Wigner-Eckart theorem as
, This relation can in turn be used to compute the expectation value
<(DMT£‘\®',(,’,/) = (—l)J’M ( 7JM 2 I\-ﬁl’ ) <<DJHT)‘HQ>J/)A of some simple reduced matrix elements like

/ = J 0o J . —

Multiplying from the left with the same 3; symbol and summing ((bJHlH(DJ b= Z (71)J L ( Moo M ) (@%AI\(DJ ) = V2J+ 14

over M, ji, M" we obtain the equivalent relation M,M"

7 _ J A J , where we used
@0 = 3 (—1 M ( e ) (4T o), Ly
sl IMIM'[00) =~ 26 1 Spamr.
A - . ( |00) T
where we used the orthogonality properties of the 3j symbols from
the previous page.




‘ Angular momentum algebra, Wigner-Eckart theorem

Similarly, using

(J 1 J>:(71)J,M M .
Mo M OEDED

we have that

@Iae) = S0 (G o ) @hlizdod) = v

MM

With the Pauli spin matrices o and a state with J = 1/2, the
reduced matrix element

(3loll3) = V&,

Before we proceed with further examples, we need some other
properties of the Wigner-Eckart theorem plus some additional
angular momenta relations.

‘ Angular momentum algebra, Wigner-Eckart theorem

If we look at the hermitian adjoint of the operator T:, we see via
the commutation relations that (T[})T is not an irreducible tensor,
that is

e (T = VOV E WA F p+ (Tt

and
[ (T = —u(T)T.

The hermitian adjoint (7.}) is not an irreducible tensor. As an
example, consider the spherical harmonics for / = 1 and m; = £1.
These functions are

=1 _ /3.

Ym=1(0,0) = \/;sm (0) expgh,

Vil 1(0,0) = 3 sin (0) exp —1¢
m=-1(0; Var |

and

‘ Angular momentum algebra, Wigner-Eckart theorem

With the modified quantity
o = (G2,
we can then define the expectation value
@UITAOMN = Qud M IM) (|| T |07),

since the Clebsch-Gordan coefficients are real. The rhs is equivalent
with

(A M IMY(@| T [0y = (o (T 97y),
which is equal to

(Ofl (T 19%) = (1) — M M) (S || TA[0).

‘ Angular momentum algebra, Wigner-Eckart theorem

The Wigner-Eckart theorem states that the expectation value for
an irreducible spherical tensor can be written as

(OUITR ) = (Al M| IMY (@] T [o7).

Since the Clebsch-Gordan coefficients themselves are easy to
evaluate, the interesting quantity is the reduced matrix element.
Note also that the Clebsch-Gordan coefficients limit via the
triangular relation among A, J and J' the possible non-zero values.
From the theorem we see also that

(" M| M) (

O T dpy) = Ao
OmlTicl®w) = Dr o TGO,

J A J!
(@I T lo8),

meaning that if we know the matrix elements for say some p = o,
M' = Mg and M = My we can calculate all other.

‘ Angular momentum algebra, Wigner-Eckart theorem

It is easy to see that the Hermitian adjoint of these two functions

[0 =g sn 000
it a0.0)] = [ 2 i) e,

do not behave as a spherical tensor. However, the modified quantity

and

Ta = (CIMHT2N,

does satisfy the above commutation relations.

‘ Angular momentum algebra, Wigner-Eckart theorem

Let us now apply the theorem to some selected expectation values.
In several of the expectation values we will meet when evaluating
explicit matrix elements, we will have to deal with expectation
values involving spherical harmonics. A general central interaction
can be expanded in a complete set of functions like the Legendre
polynomials, that is, we have an interaction, with r; = [r; — rj],

oo

v(ry) = Z vi(rij) Pu(cos (),

v=0
with P, being a Legendre polynomials

4 "
Py (cos (05) =Y 1 YA () Y ().
"

We will come back later to how we split the above into a
contribution that involves only one of the coordinates.




‘ Angular momentum algebra, Wigner-Eckart theorem

This means that we will need matrix elements of the type
IV Y.
We can rewrite the Wigner-Eckart theorem as
YIYAIYY) =S Ol ') Y2 Yo,
mp

This equation is true for all values of # and ¢. It must also hold for
6 =0.

‘ Angular momentum algebra, Wigner-Eckart theorem

Till now we have mainly been concerned with the coupling of two
angular momenta j, and jp, to a final angular momentum J. If we
wish to describe a three-body state with a final angular momentum
J, we need to couple three angular momenta, say the two momenta
Jas Jb to a third one j.. The coupling order is important and leads to
a less trivial implementation of the Pauli principle. With three
angular momenta there are obviously 3! ways by which we can
combine the angular momenta. In m-scheme a three-body Slater
determinant is represented as (say for the case of 1°0, three
neutrons outside the core of 1°0),

[*°0) = |(abc)M) = ala}al|'°0) = [®2b<).

The Pauli principle is automagically implemented via the
anti-commutation relations.

‘ Angular momentum algebra, Wigner-Eckart theorem

Now, nothing hinders us from recoupling this state by coupling j,
to jc, yielding an intermediate angular momentum Jp. and then
couple this angular momentum to j,, resulting in the final angular
momentum J'.

That is, we can have
[Ga = Uis = eldbe) ) = > (ombieme| Joe Moe) {jamlyJoc Mic| S M') &
m,m),m.

We will always assume that we work with orthornormal states, this
means that when we compute the overlap betweem these two
possible ways of coupling angular momenta, we get

(Ua = Lo = deldoe) "M [(Lja = jslJab = je) IM) =010 D> Gama)

mampme
(2)

X (jpMpjeme|Jpe M)
(3)

‘ Angular momentum algebra, Wigner-Eckart theorem

We have
YAy =S Oalm| ') YYD
mp

and for § = 0, the spherical harmonic
j21+1
Y,Ly(e =0,¢)= 7%0,

(21+1)(2A+1)
4n (2l + 1)

which results in

/2
YlIYAIY!) = { }1 (2000]/'0).

‘ Angular momentum algebra, Wigner-Eckart theorem

However, when we deal the same state in an angular momentum
coupled basis, we need to be a little bit more careful. We can
namely couple the states as follows

[(Ua = Jbldab — je) ) = Z (amajbmp|JabMab) {JabMabjec me| JM) [jam

mampme

that is, we couple first j, to jp to yield an intermediate angular
momentum J,p, then to j. yielding the final angular momentum J.

‘ Angular momentum algebra, Wigner-Eckart theorem

We use then the latter equation to define the so-called 6j-symbols

(Ua = Ui = el be) I M |([ja = jolJab = je)IM) = S10dpmwr Y, (i

mampme

% (jbMbjcme|Jbe

(71)ja+jb+jc+-l \/C

where the symbol in curly brackets is the 6 symbol. A specific
coupling order has to be respected in the symbol, that is, the
so-called triangular relations between three angular momenta needs
to be respected, that is

S P P £




‘ Angular momentum algebra, Wigner-Eckart theorem

The 6/ symbol is invariant under the permutation of any two
columns

{j1 J2 js}:{jz i jS}:{jl J3 jz}:{jz J2 11}
Ja Js Js Js Ja Jo Ja Js Js Jo Js Ja
The 6 symbol is also invariant if upper and lower arguments are
interchanged in any two columns

A2 B _ fia s s\ _ [ oJs Je\ _ Jia i2 Js
Ja Js Je A o2 Je Ja 2 Ja n Js J3

‘ Angular momentum algebra, Wigner-Eckart theorem

The 6 symbols satisfy this orthogonality relation

A A 5
: a2 3 Ja 2 3 Jode o - - L.
2j3+1) 7% 2 s = — JJss 2,
%:( 2 ){14 Js Jé} {_M Js Jé} 2js + 1{11 Js:Jo} s j2:Jo}

The symbol {jij2j3} (called the triangular delta) is equal to one if
the triad (jij2j3) satisfies the triangular conditions and zero
otherwise. A useful value is given when say one of the angular
momenta are zero, say Jpc = 0, then we have

{ Ja o Jab }: (1Yot dns .5,
Je J 0 (2ja+ 1)(2jp + 1)

‘ Angular momentum algebra, Wigner-Eckart theorem

Note that the two-body intermediate state is assumed to be
antisymmetric but not normalized, that is, the state which involves
the quantum numbers j, and j,. Assume that the intermediate
two-body state is antisymmetric. With this coupling order, we can
rewrite ( in a schematic way) the general three-particle Slater
determinant as

®(a, b, c) = Al([ja = jblJab = Je)J),

with an implicit sum over J,,. The antisymmetrization operator A
is used here to indicate that we need to antisymmetrize the state.
Challenge: Use the definition of the 6 symbol and find an explicit
expression for the above three-body state using the coupling order
[(Ua = jblJab = je)J)-

‘ Testing properties of 6j symbols

The above properties of 6 symbols can again be tested using the
symbolic python package wigner. Let us test the invariance

a2 B\ _ [ o o
Ja Js Jo Js Js Jo
The following program tests this relation for the case of j; = 3/2,
2=3/2j3=3j=1/2js=1/2,je =1
from sympy import S
from sympy.physics.wigner import wigner_6j

# Twice the values of all js
il =

oW o w

j 1

"t The triengular relation has to be fulfilled
print wigner_6j(S(j1)/2, S(j2)/2, j3, S(j4)/2, S(j5)/2, j6)
" Swapping columns 1 <==> 2 """

print wigner_6j(S(j2)/2, $(j1)/2, j3, S(35)/2, S(j4)/2, i6)

wun

‘ Angular momentum algebra, Wigner-Eckart theorem

With the 6 symbol defined, we can go back and and rewrite the
overlap between the two ways of recoupling angular momenta in
terms of the 6/ symbol. That is, we can have

Ga = Db = Jeldoe) M) = (= 1Yttt (2 1, + 1) (2Jbe + 1)

Jab

Can you find the inverse relation? These relations can in turn be
used to write out the fully anti-symmetrized three-body wave
function in a J-scheme coupled basis. If you opt then for a specific
coupling order, say |([ja = jb]Jab — Jjc)JM), you need to express
this representation in terms of the other coupling possibilities.

Ja
Je

‘ Angular momentum algebra, Wigner-Eckart theorem

We can also coupled together four angular momenta. Consider two
four-body states, with single-particle angular momenta j,, jp, jc and
jd we can have a state with final J

|®(a, b, ¢, d))1 = |([ja = jblab % Lic = jalJea)IM),

where we read the coupling order as j, couples with j, to given and
intermediate angular momentum J,,. Moreover, j. couples with j4
to given and intermediate angular momentum J.4. The two
intermediate angular momenta J,, and Jo4 are in turn coupled to a
final J. These operations involved three Clebsch-Gordan
coefficients.

Alternatively, we could couple in the following order

[®(a, b, ¢, d))2 = |(ia = jelJac x lib = jalJba)IM),




‘ Angular momentum algebra, Wigner-Eckart theorem ‘ Angular momentum algebra, Wigner-Eckart theorem

The overlap between these two states A 9j symbol is invariant under reflection in either diagonal
((Ua = deldac % Lib = Jaldba) IM|(Lia = jblJab X lic = jalJea)IM), 4B & B &b
Ja s Jop =2 S5 B =8 S5 )2
is equal to Jr Js Jo 3 J6 Jo Jr s
Z (2 ajbMb| JabMap) (e Mejg M| Jog Meg) (JabMap Jeg Mcq| JN) The permutation c;f any two rows or any two columns yields a
iy phase factor (—1)°, where
% (jaMajic Mc|Jac Mac) (o MbjaMd|Jecd Mba) (Jac Mac Joa Mba| IM) | (5) 9
Ja Jb Jab §=
= V(@b + D2Jed + D2Jac + 1)2pg + 1§ je o Je ¢ i=1
Jac Jpa S As an example we have
it 2.yl vt oo QoG cahcents, whle ok S bk S g
the 9j st{)oI involves six ' Ja s Jop=(=1)°<ha o j3p=(=1)><Js Jja Jo
el : fr Je s o s o o 1 o

‘ Angular momentum algebra, Wigner-Eckart theorem ‘ Angular momentum algebra, Wigner-Eckart theorem

The tensor operator in the nucleon-nucleon potential is given by

A useful case is when say J =0 in

(ISJ|Sio|I'S' )y = (—=)5+I/302T + 1)(2F + 1)(2S + 1)(25' + 1)

Ja b Ja . ;o ' 518 S
Ny OudeaDocoa (it bt {J_a Js X{ ; 5/ IS } ( é) g [’) ) o 5% S
Joe oy O (24ap +1)(2Jac +1) Jd} Je 11 2

x(s1||o1||s3)(s2||o2|[sa)

and it is zero for the 1Sy wave.
How do we get here?

‘ Angular momen

m algebra, Wigner-Eckart theorem ‘ Angular momentum algebra, Wigner-Eckart theorem

To derive the expectation value of the nuclear tensor force, we Starting with
recall that the product of two irreducible tensor operators is

(Wl = 30 ()

Wy, = > (pmpqma|rm;) T, Uf, . T M m M
mpmq
r
and using the orthogonality properties of the Clebsch-Gordan X ((JajpJM| [Trﬁp U,%J m |Geja) ' M"),

coefficients we can rewrite the above as . .
we assume now that T acts only on j, and jc and that U acts only

P ya — r on jp and jy. The matrix element
Timy U, n;q(;ympqmq\rm,)Wm,, ((aoIM| [TH, Uﬂ?q},rﬂ, |(jeja)J'M') can be written out, when we
insert a complete set of states |jim;jjm;) (jimijjmj| between T and
Assume now that the operators T and U act on different parts of U as
say a wave function. The operator T could act on the spatial part ,
only while the operator U acts only on the spin part. This means ((ajpIM| [T,’:.P Uﬁnq] |Geja) I M) = 2(pmpqmq\rm,)(jamajbmbLM)(j
also that these operators commute. The reduced matrix element of " iz

this operator is thus, using the Wigner-Eckart theorem,

. .
%(Gomajome| T8, ] |Gemejsms)) (emejsms| [U,]” [Uemeiam

i)W G}y = S (w4 2

The comnblete set of states that was inserted between T and (J




‘ Angular momentum algebra, Wigner-Eckart theorem

Combining the last two equations from the previous slide and and
applying the Wigner-Eckart theorem, we arrive at (rearranging
phase factors)

il IWGeio)) = T F D+ D@+ D 3 (3 f

miM, M’ mr

o o b Je o Ja I P q
!
m, mp —M —-me —mg M —-mp, —mg m,

Ja e p Jb Jd q : T ool .
X TP|jeyx (pl|U
(& 2 (B o o )Gl <Gl ol

which can be rewritten in terms of a 9j symbol as

(Uado) W[ Gedar) ') = V(2 + 1)(2r + 1)(2J + 1) Gal TP L) Ui | U1

‘ Angular momentum algebra, Wigner-Eckart theorem

Another very useful expression is the case where the operators act

in just one space. We state here without showing that the reduced
matrix element

r

GallW Lo} = Gall [TP x T [jp) = (~1)o et v2r+ 1 {J,’,’ ’ J
2 <

X (al | T2 lje) el T Lib) -

‘ Angular momentum algebra, Wigner-Eckart theorem

We need that the coordinate vector r can be written in terms of

spherical components as
[ 4T
Oy = 7 ?Yla

Using this expression we get

4
red? = §r22<1a1ﬂ|zu>vmyw
a8

‘ Angular momentum algebra, Wigner-Eckart theorem

From this expression we can in turn compute for example the
spin-spin operator of the tensor force.

In case r = 0, that is we two tensor operators coupled to a scalar,
we can use (with p = q)

o] |
1 Ybtiet+2) {Ja J‘b }
(=17 Jd Je P)

2 b J
p p O (24+1)(24 +1)
and obtain

(MW o)) = (1P Gl Pl sl {229 )

‘ Angular momentum algebra, Wigner-Eckart theorem

The tensor operator in the nucleon-nucleon potential can be written

as
3 @ @]©
V:ﬁ [[m@nz] ®[r®r] ]o
Since the irreducible tensor [r @ r](z) operates only on the angular
quantum numbers and o7 ® 02](2) operates only on the spin states
we can write the matrix element

0
(SIV|ISS) = (ISJ] [[01 2n®?ere r]<2>}:J )1rsy

{8 s baire @

(S|l [o1 ® 52] @ ||S")

‘ Angular momentum algebra, Wigner-Eckart theorem

The product of two spherical harmonics can be written as

Yimy Yiom,

_ IZ (2h + 1)(2/2: 1)(2/+1) ( h

m mp m)

h b |
x(g ; O)Y/_m(—l)’"-




‘ Angular momentum algebra, Wigner-Eckart theorem

Using this relation we get

ro r]f) = Varr? E 2(101/3\2/1)

Im a8

V2i+1
112
= \/47rr2< 00 0 ) Yo,

\/Erzw 1—25Y2_#

_1)1-1-m
x{lalp|l — m)L ( (1) (1) é ) Yi—m(=1)"]

‘ Angular momentum algebra, Wigner-Eckart theorem

Using the reduced matrix element of the spin operators defined as

51 s S
(Slllor ® aa]@ ||S"y = \/(25+1)(25/+1)5{ 5 sy 5/}

11 2

% (stl|oa|[s3)(s2|lo2]sa)

and inserting these expressions for the two reduced matrix elements
we get

(ISUV|I'S'Jy = (=1)5+7\/30(2/ + 1)(2/" + 1)(2S + 1)(25' + 1)

{ISJ 2 % S
X< o, }( >5354S’
IS 2 000 >

x(s1]|o1|s3)(s2[lo2]|sa)-

‘ Angular momentum algebra, Wigner-Eckart theorem

To obtain a V-matrix in a h.o. basis, we need the transformation
(nNILTST|V|n'N'I'L' 7S'T),

with n and N the principal quantum numbers of the relative and
center-of-mass motion, respectively.

[nINLTST) = / k2 K2dkdKRy(vV2ack) Rui (v/1/2aK) | KIKLT ST).

The parameter « is the chosen oscillator length.

‘ Angular momentum algebra, Wigner-Eckart theorem

We can then use this relation to rewrite the reduced matrix element
containing the position vector as

ired® i = m@ﬂwnm

«/E@rz(—n’ (2/+1):>7(r2l’+1) (é

‘ Angular momentum algebra, Wigner-Eckart theorem

Normally, we start we a nucleon-nucleon interaction fitted to
reproduce scattering data. It is common then to represent this
interaction in terms relative momenta k, the center-of-mass
momentum K and various partial wave quantum numbers like the
spin S, the total relative angular momentum 7, isospin T and
relative orbital momentum / and finally the corresponding
center-of-mass L. We can then write the free interaction matrix V
as

(kKILTST|V|K'KI'LTS'T).

Transformations from the relative and center-of-mass motion
system to the lab system will be discussed below.

‘ Angular momentum algebra, Wigner-Eckart theorem

The most commonly employed sp basis is the harmonic oscillator,
which in turn means that a two-particle wave function with total
angular momentum J and isospin T can be expressed as

[(nalaja) (M6 lnjb) IT) = > F x (ab|ASJ)

1
V(1+012) AES;nI\IlL
~f L I X
_1\+IT-L-S
x(—1) A s J 7
x (nINL|n,lanplp) [nINLT ST),

where the term (nINL|n,lsnplp) is the so-called Moshinsky-Talmi
transformation coefficient (see chapter 18 of Alex Brown's notes).




‘ Angular momentum algebra, Wigner-Eckart theorem ‘ Angular momentum algebra, Wigner-Eckart theorem

The V-matrix in terms of harmonic oscillator wave functions reads

The term (ab|LSJ) is a shorthand for the LS — jj transformation . B (1= (—1)H+s+T)
coefficient, A e\ ANenim) = )\)\;’J n,",I,ZNN,L V(T + 925)1 + o) /(1 + 6ap)(1 + bca)
(abASS) = ffpAS { ;b - } A % (ab|ASJ) (cd|X'SJ) (MINL|nylanpl) (' NL nclenglgX')
A lS J Xj(il)»rwr/w{ IS— 3 } }{ é /J' 9’ }
Here we use £ = v/2x + 1. The factor F is defined as

F=2CU" i s, = 5, and we < (nNILTST|V|n' N'I'L'TS'T).

The label a represents here all the single particle quantum numbers
Nalaja.




