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Introduction
Coester and Kummel first developed the ideas that led to coupled-cluster theory
in the late 1950s. The basic idea is that the correlated wave function of a many-
body system | Ψ〉 can be formulated as an exponential of correlation operators
T acting on a reference state | Φ〉

| Ψ〉 = exp
(
−T̂
)
| Φ〉 .

We will discuss how to define the operators later in this work. This simple ansatz
carries enormous power. It leads to a non-perturbative many-body theory that
includes summation of ladder diagrams , ring diagrams, and an infinite-order
generalization of many-body perturbation theory.

Introduction
Developments and applications of coupled-cluster theory took different routes
in chemistry and nuclear physics. In quantum chemistry, coupled-cluster devel-
opments and applications have proven to be extremely useful, see for example
the review by Barrett and Musial as well as the recent textbook by Shavitt
and Barrett. Many previous applications to nuclear physics struggled with the
repulsive character of the nuclear forces and limited basis sets used in the compu-
tations. Most of these problems have been overcome during the last decade and
coupled-cluster theory is one of the computational methods of preference for do-
ing nuclear physics, with applications ranging from light nuclei to medium-heavy
nuclei, see for example the recent review by Hagen, Papenbrock, Hjorth-Jensen
and Dean.
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A non-practical way of solving the eigenvalue problem
Before we proceed with the derivation of the Coupled cluster equations, let us
repeat some of the arguments we presented during our FCI lectures. In our FCI
discussions, we rewrote the solution of the Schroedinger equation as a set of
coupled equationsin the unknown coefficients C. Let us repeat some of these
arguments. To obtain the eigenstates and eigenvalues in terms of non-linear
equations is not a very practical approach. However, it serves the scope of
linking FCI theory with approximative solutions to the many-body problem like
Coupled cluster (CC) theory

A non-practical way of solving the eigenvalue problem
If we assume that we have a two-body operator at most, the Slater-Condon rule
gives then an equation for the correlation energy in terms of Ca

i and Cab
ij only.

We get then

〈Φ0|Ĥ − E|Φ0〉+
∑
ai

〈Φ0|Ĥ − E|Φa
i 〉Ca

i +
∑
abij

〈Φ0|Ĥ − E|Φab
ij 〉Cab

ij = 0,

or
E − E0 = ∆E =

∑
ai

〈Φ0|Ĥ|Φa
i 〉Ca

i +
∑
abij

〈Φ0|Ĥ|Φab
ij 〉Cab

ij ,

where the energy E0 is the reference energy and ∆E defines the so-called
correlation energy. The single-particle basis functions could be the results of a
Hartree-Fock calculation or just the eigenstates of the non-interacting part of
the Hamiltonian.

A non-practical way of solving the eigenvalue problem
In our notes on Hartree-Fock calculations, we have already computed the matrix
〈Φ0|Ĥ|Φa

i 〉 and 〈Φ0|Ĥ|Φab
ij 〉. If we are using a Hartree-Fock basis, then the

matrix elements 〈Φ0|Ĥ|Φa
i 〉 = 0 and we are left with a correlation energy given

by
E − E0 = ∆EHF =

∑
abij

〈Φ0|Ĥ|Φab
ij 〉Cab

ij .

A non-practical way of solving the eigenvalue problem
Inserting the various matrix elements we can rewrite the previous equation as

∆E =
∑
ai

〈i|f̂ |a〉Ca
i +

∑
abij

〈ij|v̂|ab〉Cab
ij .

This equation determines the correlation energy but not the coefficients C. We
need more equations. Our next step is to set up

〈Φa
i |Ĥ−E|Φ0〉+

∑
bj

〈Φa
i |Ĥ−E|Φb

j〉Cb
j +
∑
bcjk

〈Φa
i |Ĥ−E|Φbc

jk〉Cbc
jk+

∑
bcdjkl

〈Φa
i |Ĥ−E|Φbcd

jkl〉Cbcd
jkl = 0,
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as this equation will allow us to find an expression for the coefficents Ca
i since

we can rewrite this equation as

〈i|f̂ |a〉+〈Φa
i |Ĥ|Φa

i 〉Ca
i +

∑
bj 6=ai

〈Φa
i |Ĥ|Φb

j〉Cb
j +
∑
bcjk

〈Φa
i |Ĥ|Φbc

jk〉Cbc
jk+

∑
bcdjkl

〈Φa
i |Ĥ|Φbcd

jkl〉Cbcd
jkl = ECa

i .

A non-practical way of solving the eigenvalue problem
We see that on the right-hand side we have the energy E. This leads to a
non-linear equation in the unknown coefficients. These equations are normally
solved iteratively ( that is we can start with a guess for the coefficients Ca

i ). A
common choice is to use perturbation theory for the first guess, setting thereby

Ca
i = 〈i|f̂ |a〉

εi − εa
.

The observant reader will however see that we need an equation for Cbc
jk and

Cbcd
jkl as well. To find equations for these coefficients we need then to continue

our multiplications from the left with the various ΦP
H terms.

A non-practical way of solving the eigenvalue problem
For Cbc

jk we need then

〈Φab
ij |Ĥ − E|Φ0〉+

∑
kc

〈Φab
ij |Ĥ − E|Φc

k〉Cc
k+

∑
cdkl

〈Φab
ij |Ĥ−E|Φcd

kl 〉Ccd
kl +

∑
cdeklm

〈Φab
ij |Ĥ−E|Φcde

klm〉Ccde
klm+

∑
cdefklmn

〈Φab
ij |Ĥ−E|Φ

cdef
klmn〉C

cdef
klmn = 0,

and we can isolate the coefficients Ccd
kl in a similar way as we did for the

coefficients Ca
i . A standard choice for the first iteration is to set

Cab
ij = 〈ij|v̂|ab〉

εi + εj − εa − εb
.

A non-practical way of solving the eigenvalue problem
At the end we can rewrite our solution of the Schroedinger equation in terms of
n coupled equations for the coefficients CP

H . This is a very cumbersome way of
solving the equation. However, by using this iterative scheme we can illustrate
how we can compute the various terms in the wave operator or correlation
operator Ĉ. We will later identify the calculation of the various terms CP

H

as parts of different many-body approximations to full CI. In particular, we
can relate this non-linear scheme with Coupled Cluster theory and many-body
perturbation theory.
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Summarizing FCI and bringing in approximative methods
If we can diagonalize large matrices, FCI is the method of choice since:

• It gives all eigenvalues, ground state and excited states

• The eigenvectors are obtained directly from the coefficients CP
H which

result from the diagonalization

• We can compute easily expectation values of other operators, as well as
transition probabilities

• Correlations are easy to understand in terms of contributions to a given
operator beyond the Hartree-Fock contribution. This is the standard
approach in many-body theory.

Summarizing FCI and bringing in approximative methods
The correlation energy is defined as, with a two-body Hamiltonian,

∆E =
∑
ai

〈i|f̂ |a〉Ca
i +

∑
abij

〈ij|v̂|ab〉Cab
ij .

The coefficients C result from the solution of the eigenvalue problem. The
energy of say the ground state is then

E = Eref + ∆E,

where the so-called reference energy is the energy we obtain from a Hartree-Fock
calculation, that is

Eref = 〈Φ0|Ĥ|Φ0〉.

Summarizing FCI and bringing in approximative methods
However, as we have seen, even for a small case like the four first major shells
and a nucleus like oxygen-16, the dimensionality becomes quickly intractable. If
we wish to include single-particle states that reflect weakly bound systems, we
need a much larger single-particle basis. We need thus approximative methods
that sum specific correlations to infinite order.

Popular methods are

• Many-body perturbation theory (in essence a Taylor expansion)

• Coupled cluster theory (coupled non-linear equations)

• Green’s function approaches (matrix inversion)

• Similarity group transformation methods (coupled ordinary differential
equations)

All these methods start normally with a Hartree-Fock basis as the calculational
basis.
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A quick tour of Coupled Cluster theory
The ansatz for the wavefunction (ground state) is given by

|Ψ〉 = |ΨCC〉 = eT̂ |Φ0〉 =
(

A∑
n=1

1
n! T̂

n

)
|Φ0〉,

where A represents the maximum number of particle-hole excitations and T̂ is
the cluster operator defined as

T̂ = T̂1 + T̂2 + . . .+ T̂A

T̂n =
(

1
n!

)2 ∑
i1,i2,...in

a1,a2,...an

ta1a2...an
i1i2...in

a†a1
a†a2

. . . a†an
ain

. . . ai2ai1 .

A quick tour of Coupled Cluster theory
The energy is given by

ECC = 〈Φ0|H|Φ0〉,

where H is a similarity transformed Hamiltonian

H = e−T̂ ĤNe
T̂

ĤN = Ĥ − 〈Φ0|Ĥ|Φ0〉.

A quick tour of Coupled Cluster theory
The coupled cluster energy is a function of the unknown cluster amplitudes
ta1a2...an
i1i2...in

, given by the solutions to the amplitude equations

0 = 〈Φa1...an
i1...in

|H|Φ0〉.

The similarity transformed HamiltonianH is expanded using the Baker-Campbell-
Hausdorff expression,

H = ĤN +
[
ĤN , T̂

]
+ 1

2

[[
ĤN , T̂

]
, T̂
]

+ . . .

1
n!

[
. . .
[
ĤN , T̂

]
, . . . T̂

]
+ . . .

and simplified using the connected cluster theorem

H = ĤN +
(
ĤN T̂

)
c

+ 1
2

(
ĤN T̂

2
)

c
+ · · ·+ 1

n!

(
ĤN T̂

n
)

c
+ . . .
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A quick tour of Coupled Cluster theory
A much used approximation is to truncate the cluster operator T̂ at the n = 2
level. This defines the so-called singes and doubles approximation to the Coupled
Cluster wavefunction, normally shortened to CCSD..

The coupled cluster wavefunction is now given by

|ΨCC〉 = eT̂1+T̂2 |Φ0〉

where

T̂1 =
∑
ia

tai a
†
aai

T̂2 = 1
4
∑
ijab

tab
ij a
†
aa
†
bajai.

A quick tour of Coupled Cluster theory
The amplutudes t play a role similar to the coefficients C in the shell-model
calculations. They are obtained by solving a set of non-linear equations similar
to those discussed above in connection withe FCI discussion.

If we truncate our equations at the CCSD level, it corresponds to performing
a transformation of the Hamiltonian matrix of the following type for a six particle
problem (with a two-body Hamiltonian):

0p− 0h 1p− 1h 2p− 2h 3p− 3h 4p− 4h 5p− 5h 6p− 6h
0p− 0h x̃ x̃ x̃ 0 0 0 0
1p− 1h 0 x̃ x̃ x̃ 0 0 0
2p− 2h 0 x̃ x̃ x̃ x̃ 0 0
3p− 3h 0 x̃ x̃ x̃ x̃ x̃ 0
4p− 4h 0 0 x̃ x̃ x̃ x̃ x̃
5p− 5h 0 0 0 x̃ x̃ x̃ x̃
6p− 6h 0 0 0 0 x̃ x̃ x̃

A quick tour of Coupled Cluster theory
In our FCI discussion the correlation energy is defined as, with a two-body
Hamiltonian,

∆E =
∑
ai

〈i|f̂ |a〉Ca
i +

∑
abij

〈ij|v̂|ab〉Cab
ij .

In Coupled cluster theory it becomes (irrespective of level of truncation of T )

∆E =
∑
ai

〈i|f̂ |a〉tai +
∑
abij

〈ij|v̂|ab〉tab
ij .
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A quick tour of Coupled Cluster theory
Coupled cluster theory has several interesting computational features and is the
method of choice in quantum chemistry. The method was originally proposed by
Coester and Kummel, two nuclear physicists (way back in the fifties). It came
back in full strength in nuclear physics during the last decade.

There are several interesting features:

• With a truncation like CCSD or CCSDT, we can include to infinite order
correlations like 2p− 2h.

• We can include a large basis of single-particle states, not possible in
standard FCI calculations

However, Coupled Cluster theory is

• non-variational

• if we want to find properties of excited states, additional calculations via
for example equation of motion methods are needed

• if correlations are strong, a single-reference ansatz may not be the best
starting point

• we cannot quantify properly the error we make when truncations are made
in the cluster operator

The CCD approximation
We will now approximate the cluster operator T̂ to include only 2p− 2h correla-
tions. This leads to the so-called CCD approximation, that is

T̂ ≈ T̂2 = 1
4
∑
abij

tab
ij a
†
aa
†
bajai,

meaning that we have

|Ψ0〉 ≈ |ΨCCD〉 = exp
(
T̂2

)
|Φ0〉.

The CCD approximation
Inserting these equations in the expression for the computation of the energy
we have, with a Hamiltonian defined with respect to a general vacuum (see the
exercises in the second quantization part)

Ĥ = ĤN + Eref ,

with
ĤN =

∑
pq

〈p|f̂ |q〉a†paq + 1
4
∑
pqrs

〈pq|v̂|rs〉a†pa†qasar,
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we obtain that the energy can be written as

〈Φ0| exp−
(
T̂2

)
ĤN exp

(
T̂2

)
|Φ0〉 = 〈Φ0|ĤN (1 + T̂2)|Φ0〉 = ECCD.

The CCD approximation
This quantity becomes

ECCD = Eref + 1
4
∑
abij

〈ij|v̂|ab〉tab
ij ,

where the latter is the correlation energy from this level of approximation of CC
theory. Similarly, the expression for the amplitudes reads

〈Φab
ij | exp−

(
T̂2

)
ĤN exp

(
T̂2

)
|Φ0〉 = 0.

The CCD approximation
These equations can be reduced to (after several applications of Wick’s theorem)
to, for all i > j and all a > b,

0 = 〈ab|v̂|ij〉+ (εa + εb − εi − εj) tab
ij

+1
2
∑
cd

〈ab|v̂|cd〉tcd
ij + 1

2
∑
kl

〈kl|v̂|ij〉tab
kl + P̂ (ij|ab)

∑
kc

〈kb|v̂|cj〉tac
ik

+1
4
∑
klcd

〈kl|v̂|cd〉tcd
ij t

ab
kl + P̂ (ij)

∑
klcd

〈kl|v̂|cd〉tac
ik t

bd
jl

−1
2 P̂ (ij)

∑
klcd

〈kl|v̂|cd〉tdc
ik t

ab
lj −

1
2 P̂ (ab)

∑
klcd

〈kl|v̂|cd〉tac
lk t

db
ij , (1)

where we have defined
P̂ (ab) = 1− P̂ab,

where P̂ab interchanges two particles occupying the quantum numbers a and b.

The CCD approximation
The operator P̂ (ij|ab) is defined as

P̂ (ij|ab) = (1− P̂ij)(1− P̂ab).

Recall also that the unknown amplitudes tab
ij represent anti-symmetrized matrix

elements, meaning that they obey the same symmetry relations as the two-body
interaction, that is

tab
ij = −tab

ji = −tba
ij = tba

ji .

The two-body matrix elements are also anti-symmetrized, meaning that

〈ab|v̂|ij〉 = −〈ab|v̂|ji〉 = −〈ba|v̂|ij〉 = 〈ba|v̂|ji〉.

The non-linear equations for the unknown amplitudes tab
ij are solved iteratively.

We discuss the implementation of these equations below.
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Approximations to the full CCD equations
It is useful to make approximations to the equations for the amplitudes. The
standard method for solving these equations is to set up an iterative scheme
where method’s like Newton’s method or similar root searching methods are
used to find the amplitudes. Itreative solvers need a guess for the amplitudes.
A good starting point is to use the correlated wave operator from perturbation
theory to first order in the interaction. This means that we define the zeroth
approximation to the amplitudes as

t(0) = 〈ab|v̂|ij〉
(εi + εj − εa − εb) ,

leading to our first approximation for the correlation energy at the CCD level
to be equal to second-order perturbation theory without 1p − 1h excitations,
namely

∆E(0)
CCD = 1

4
∑
abij

〈ij|v̂|ab〉〈ab|v̂|ij〉
(εi + εj − εa − εb) .

Approximations to the full CCD equations
With this starting point, we are now ready to solve Eq. (1) iteratively. Before we
attack the full equations, it is however instructive to study a truncated version
of the equations. We will first study the following approximation where we take
away all terms except the linear terms that involve the single-particle energies
and the the two-particle intermediate excitations, that is

0 = 〈ab|v̂|ij〉+ (εa + εb − εi − εj) tab
ij + 1

2
∑
cd

〈ab|v̂|cd〉tcd
ij . (2)

Approximations to the full CCD equations
Setting the single-particle energies for the hole states equal to an energy variable
ω = εi + εj , Eq. (2) reduces to the well-known equations for the so-called
G-matrix, widely used in infinite matter and finite nuclei studies. The equation
can then be reordered and solved by matrix inversion. To see this let us define
the following quantity

τab
ij = (ω − εa − εb) tab

ij ,

and inserting
1 = (ω − εc − εd)

(ω − εc − εd) ,

in the intermediate sums over cd in Eq. (2), we can rewrite the latter equation
as

τab
ij (ω) = 〈ab|v̂|ij〉+ 1

2
∑
cd

〈ab|v̂|cd〉 1
ω − εc − εd

τ cd
ij (ω),
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where we have indicated an explicit energy dependence. This equation, trans-
forming a two-particle configuration into a single index, can be transformed into
a matrix inversion problem. Solving the equations for a fixed energy ω allows
us to compare directly with results from Green’s function theory when only
two-particle intermediate states are included.

Approximations to the full CCD equations
To solve Eq. (2), we would thus start with a guess for the unknown amplitudes,
typically using the wave operator defined by first order in perturbation theory,
leading to a zeroth approximation to the energy given by second-order perturba-
tion theory for the correlation energy. A simple approach to the solution of Eq.
(2), is to thus to

1. Start with a guess for the amplitudes and compute the zeroth approximation
to the correlation energy

2. Use the ansatz for the amplitudes to solve Eq. (2) via for example your
root-finding method of choice (Newton’s method or modifications thereof
can be used) and continue these iterations till the correlation energy does
not change more than a prefixed quantity λ; ∆E(i)

CCD −∆E(i−1)
CCD ≤ λ.

3. It is common during the iterations to scale the amplitudes with a parameter
α, with α ∈ (0, 1] as t(i) = αt(i) + (1− α)t(i−1).

Approximations to the full CCD equations
The next approximation is to include the two-hole term in Eq. (1), a term
which allow us to make a link with Green’s function theory with two-particle
and two-hole correlations. This means that we solve

0 = 〈ab|v̂|ij〉+(εa + εb − εi − εj) tab
ij + 1

2
∑
cd

〈ab|v̂|cd〉tcd
ij + 1

2
∑
kl

〈kl|v̂|ij〉tab
kl . (3)

This equation is solved the same way as we would do for Eq. (2). The final step
is then to include all terms in Eq. (1).
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