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Reminder on the Wigner-Eckart theorem

In our angular momentum lectures on the Wigner-Eckart theorem
we developed two equations. One for the general expectation value
that depends also on the magnetic quantum numbers

〈ΦJ
M |Tλ

µ |ΦJ′
M′〉 ≡ (−1)J−M

(
J λ J ′

−M µ M ′

)
〈ΦJ ||Tλ||ΦJ′〉,

and one for the reduced matrix elements in terms of

〈ΦJ ||Tλ||ΦJ′〉 ≡
∑

M,µ,M′

(−1)J−M

(
J λ J ′

−M µ M ′

)
〈ΦJ

M |Tλ
µ |ΦJ′

M′〉.



Why the Wigner-Eckart theorem?
Unless we have observables which depend on the magnetic
quantum numbers, the degeneracy given by these quantum
numbers is not seen experimentally. The typical situation when we
perform shell-model calculations is that the results depend on the
magnetic quantum numbers. The reason for this is that it is easy
to implement the Pauli principle for many particles when we work in
what we dubbed for m-scheme.
A resulting state in a shell-model calculations will thus depend on
the total value of M defined as

M =
A∑

i=1

mji .

A shell model many-body state is given by a linear combination of
Slater determinants |Φi 〉. That is, for some conserved quantum
numbers λ we have

|Psiλ〉 =
∑

i

Ci |Φi 〉,

where the coefficients are the overlaps between the many-body
basis sets Ψ and Φ and are the resulting eigenvectors from the
shell-model calculations.



Why the Wigner-Eckart theorem, representing a shell-model
state

In second quantization, our ansatz for a state like the ground state
is

|Φ0〉 =

∏
i≤F

â†i

 |0〉,
where the index i defines different single-particle states up to the
Fermi level. We have assumed that we have N fermions. A given
one-particle-one-hole (1p1h) state can be written as

|Φa
i 〉 = â†aâi |Φ0〉,

while a 2p2h state can be written as

|Φab
ij 〉 = â†aâ†bâj âi |Φ0〉,

and a general NpNh state as

|Φabc...
ijk... 〉 = â†aâ†bâ†c . . . âk âj âi |Φ0〉.



Representing a shell-model state

A general shell-model many-body state

|Psiγ〉 =
∑

i

Ci |Φi 〉,

can be expanded as

|Ψγ〉 = C0|Φ0〉+
∑

ai

C a
i |Φa

i 〉+
∑
abij

C ab
ij |Φab

ij 〉+ . . . .



Representing a shell-model state and one-body operators

A one-body operator represented by a spherical tensor of rank λ is
given as

Oλ
µ =

∑
pq

〈p|Oλ
µ |q〉a†paq,

meaning that when we compute a transition amplitude

〈Ψδ|Oλ
µ |Ψγ〉 =

∑
ij

C ∗δi Cγj〈Φi |Oλ
µ |Φj〉,

we need to compute
〈Φi |Oλ

µ |Φj〉.



Rewriting the transition amplitude

We want to rewrite
〈Φi |Oλ

µ |Φj〉,

in terms of the reduced matrix element only. Let us introduce the
relevant quantum numbers for the states Φi and Φj . We include
only the relevant ones. We have then in m-scheme

〈Φi |Oλ
µ |Φj〉 =

∑
pq

〈p|Oλ
µ |q〉〈ΦJ

M |a†paq|ΦJ′
M′〉.

With a shell-model m-scheme basis it is straightforward to compute
these amplitudes. However, as mentioned above, if we wish to
related these elements to experiment, we need to use the
Wigner-Eckart theorem and express the amplitudes in terms of
reduced matrix elements.



Rewriting the transition amplitude, first step

We can rewrite the above transition amplitude using the
Wigner-Eckart theorem. Our first step is to rewrite the one-body
operator in terms of reduced matrix elements. Since the operator is
a spherical tensor we need that the annihilation operator is
rewritten as (where q represents jq, mq etc)

ãq = (−1)jq−mq ajq ,mq .

The operator
Oλ
µ =

∑
pq

〈p|Oλ
µ |q〉a†paq,

is rewritten using the Wigner-Eckart theorem as

Oλ
µ =

∑
pq

〈p||Oλ||q〉(−1)jp−mp

(
jp λ jq
−mp µ mq

)
a†paq.



Rewriting the transition amplitude, second step

We have

Oλ
µ =

∑
pq

〈p||Oλ||q〉(−1)jp−mp

(
jp λ jq
−mp µ mq

)
a†paq.

We then single out the sum over mp and mq only and define the
recoupled one-body part of the operator as

λ−1
[
a†jp ãjq

]λ
µ

=
∑

mp ,mq

(−1)jp−mp

(
jp λ jq
−mp µ mq

)
a†paq,

with λ =
√
2λ+ 1. This gives the following expression for the

one-body operator

Oλ
µ =

∑
jp jq

〈p||Oλ||q〉λ−1
[
a†jp ãjq

]λ
µ
.



Rewriting the transition amplitude, third step

With
Oλ
µ =

∑
jp jq

〈p||Oλ||q〉λ−1
[
a†jp ãjq

]λ
µ
,

we can write

〈ΦJ
M |Oλ

µ |ΦJ′
M′〉 =

∑
pq

〈p|Oλ
µ |q〉〈ΦJ

M |a†paq|ΦJ′
M′〉,

as

〈ΦJ
M |Oλ

µ |ΦJ′
M′〉 =

∑
jp jq

〈p||Oλ||q〉〈ΦJ
M |λ−1

[
a†jp ãjq

]λ
µ
|ΦJ′

M′〉.

We have suppressed the summation over quantum numbers like
np, nq etc.



Rewriting the transition amplitude, final step
Using the Wigner-Eckart theorem

〈ΦJ
M |Oλ

µ |ΦJ′
M′〉 ≡ (−1)J−M

(
J λ J ′

−M µ M ′

)
〈ΦJ ||Oλ||ΦJ′〉,

we can then define

〈ΦJ ||Oλ||ΦJ′〉 = λ−1
∑
jp jq

〈p||Oλ||q〉〈ΦJ
M ||
[
a†jp ãjq

]λ
||ΦJ′

M′〉.

The quantity to the left in the last equation is normally called the
transition amplitude or in case of a decay process, simply the decay

amplitude. The quantity 〈ΦJ
M |λ−1

[
a†jp ãjq

]λ
µ
|ΦJ′

M′〉 is called the

one-body transition density while the corresponding reduced one is
simply called the reduced one-body transition density. The
transition densities characterize the many-nucleon properties of the
initial and final states. They do not carry information about the
transition operator beyond its one-body character. Finally, note
that in a shell-model calculation it is actually 〈ΦJ

M |Oλ
µ |ΦJ′

M′〉 which
is calculated.



Electromagnetic multipole moments and transitions

The reduced transition probability B is defined in terms of reduced
matrix elements of a one-body operator by

B(i → f ) =
〈Jf ||O(λ)||Ji 〉2

(2Ji + 1)
.

With our definition of the reduced matrix element,

〈Jf ||O(λ)||Ji 〉2 = 〈Ji ||O(λ)||Jf 〉2,

the transition probability B depends upon the direction of the
transition by the factor of (2Ji + 1). For electromagnetic transitions
Ji is that for the higher-energy initial state. But in Coulomb
excitation the initial state is usually taken as the ground state, and
it is normal to use the notation B(↑) for transitions from the
ground state.



Electromagnetic multipole moments and transitions

The one-body operators O(λ) represent a sum over the operators
for the individual nucleon degrees of freedom i

O(λ) =
∑

i

O(λ, i).

The electric transition operator is given by

O(Eλ) = rλ Y λ
µ (r̂) eqe,

were Y λ
µ are the spherical harmonics and q stands for proton q = p

or neutron q = n.



Electromagnetic multipole moments and transitions

Gamma transitions with λ = 0 are forbidden because the photon
must carry off at least one unit of angular momentum. The eq are
the electric charges for the proton and neutron in units of e. For
the free-nucleon charge we would take ep = 1 and en = 0, for the
proton and neutron, respectively. Although the bare operator acts
upon the protons, we will keep the general expression in terms of eq

in order to incorporate the effective charges for the proton and
neutron, which represent the center-of-mass corrections and the
average effects of the renormalization from wavefunction
admixtures outside the model space.



Electromagnetic multipole moments and transitions

The magnetic transition operator is given by:

O(Mλ) =

[
l

2g l
q

(λ+ 1)
+ sg s

q

]
∇[rλY λ

µ (r̂)]µN

=
√
λ(2λ+ 1)

[
[Y λ−1(r̂)⊗ l ]λµ

2g l
q

(λ+ 1)
+ [Y λ−1(r̂)⊗ s ]λµg s

q

]
rλ−1µN ,

where µN is the nuclear magneton,

µN =
e~

2mpc
= 0.105 efm,

and where mp is the mass of the proton.



Electromagnetic multipole moments and transitions

The g-factors g l
q and g s

q are the orbital and spin g-factors for the
proton and neutron, respectively. The free-nucleon values for the
g-factors are g l

p = 1, g l
n = 0, g s

p = 5.586 and g s
n = −3.826. We

may use effective values for these g-factors to take into account the
truncation of the model space.



Electromagnetic multipole moments and transitions

The most common types of transitions are E1, E2 and M1. The
E1 transition operator is given by λ = 1

O(E1) = rY (1)
µ (r̂)eqe =

√
3
4π

reqe.

The E2 transition operator with λ = 2

O(E2) = r2Y (2)
µ (r̂)eqe,



Electromagnetic multipole moments and transitions

The M1 transition operator with λ = 1 and with

Y 0 = 1/
√
4π,

we have

O(M1) =

√
3
4π

[lg l
q + s g s

q ]µN .



Electromagnetic multipole moments and transitions

The selection rules are given by the triangle condition for the
angular momenta, ∆(Ji , Jf , λ).
The electromagnetic interaction conserves parity, and the elements
of the operators for Eλ and Mλ can be classified according to their
transformation under parity change

P̂ÔP̂−1 = πOÔ,

where we have πO = (−1)λ for Y λ, πO = −1 for the vectors r, ∇
and p, and πO = +1 for the pseudo vectors l = r × p and σ. For a
given matrix element we have:

〈Ψf |O|Ψi 〉 = 〈Ψf |P−1POP−1P|Ψi 〉 = πiπf πO〈Ψf |O|Ψi 〉.

The matrix element will vanish unless πiπf πO = +1.



Electromagnetic multipole moments and transitions

The transitions are divided into two classes, those which do not
change parity change πiπf = +1 which go by the operators with
πO = +1:

πiπf = +1 for M1,E2,M3,E4 . . . ,

and the ones which do change parity change πiπf = −1 which go
by the operators with πO = −1:

πiπf = −1 for E1,M2,E3,M4 . . . .



Electromagnetic multipole moments and transitions

The electromagnetic moment operator can be expressed in terms of
the electromagnetic transition operators. By the parity selection
rule of the moments are nonzero only for M1, E2, M3, E4, . . ..
The most common are:

µ =

√
4π
3
〈J,M = J|O(M1)|J,M = J〉 =

√
4π
3

{
J 1 J
−J 0 J

}
〈J||O(M1)||J〉,

and

Q =

√
16π
5
〈J,M = J|O(E2)|J,M = J〉 =

√
16π
5

(
J 2 J
−J 0 J

)
〈J||O(E2)||J〉.



Electromagnetic multipole moments and transitions

Electromagnetic transitions and moments depend upon the reduced
nuclear matrix elements 〈f ||O(λ)||i〉. These can be expressed as a
sum over one-body transition densities (OBTD) times
single-particle matrix elements

〈f ||O(λ)||i〉 =
∑
kαkβ

OBTD(fikαkβλ)〈kα||O(λ)||kβ〉,

where the OBTD is given by

OBTD(fikαkβλ) =
〈f ||[a+kα ⊗ ãkβ ]λ||i〉√

(2λ+ 1)
.

The labels i and f are a short-hand notation for the initial and final
state quantum numbers (nωi Ji ) and (nωf Jf ), respectively. Thus
the problem is divided into two parts, one involving the nuclear
structure dependent one-body transition densities OBTD, and the
other involving the reduced single-particle matrix elements (SPME).



Electromagnetic multipole moments and transitions

The SPME for the Eλ operator is given by

〈ka||O(Eλ)||kb〉 = (−1)ja+1/2 [1 + (−1)la+λ+lb ]

2

×
√

(2ja + 1)(2λ+ 1)(2jb + 1)

4π

(
ja λ jb
1/2 0 −1/2

)
〈ka|rλ|kb〉eqe.



Electromagnetic multipole moments and transitions

The SPME for the spin part of the magnetic operator is

〈ka||O(Mλ, s)||kb〉 =

=
√
λ(2λ+ 1) < ja||[Y λ−1(r̂)⊗ s ]λ||jb >< ka|rλ−1|kb > g s

qµN ,

=
√
λ(2λ+ 1)

√
(2ja + 1)(2jb + 1)(2λ+ 1)


la 1/2 ja
lb 1/2 jb

λ− 1 1 λ


×〈la||Y λ−1(r̂)||lb〉〈||s||s〉〈ka|rλ−1|kb〉g s

qµN ,

where
〈||s||s〉 =

√
3/2.



Electromagnetic multipole moments and transitions

The SPME for the orbital part of the magnetic operator is:

〈ka||O(Mλ, l)||kb〉 =

=

√
λ(2λ+ 1)

λ+ 1
〈ja||[Y λ−1(r̂)⊗ l ]λ||jb〉〈ka|rλ−1|kb〉g l

qµN

=

√
λ(2λ+ 1)

λ+ 1
(−1)la+1/2+jb+λ

√
(2ja + 1)(2jb + 1)

×
{

la lb λ
jb ja 1/2

}
〈la||[Y λ−1(r̂)⊗ l ]λ||lb〉〈ka|rλ−1|kb〉g l

qµN ,



Electromagnetic multipole moments and transitions

where we have defined

〈la||[Y λ−1(r̂)⊗ l]λ||lb〉 = (−1)λ+la+lb
√

(2λ+ 1)lb(lb + 1)(2lb + 1)

×
{
λ− 1 1 λ

lb la lb

}
〈la||Y λ−1(r̂)||lb〉,

with

〈la||Y λ−1(r̂)||lb〉 = (−1)la

√
(2la + 1)(2lb + 1)(2λ− 1)

4π

(
la λ− 1 lb
0 0 0

)
.



Electromagnetic multipole moments and transitions

For the M1 operator the radial matrix element is

< ka|r0|kb >= δna,nb
,

and the SPME simplify to:

〈ka||O(M1, s)||kb〉 =

√
3
4π
〈ja||s ||jb〉δna,nb

g s
qµN

=

√
3
4π

(−1)la+ja+3/2
√

(2ja + 1)(2jb + 1)

{
1/2 1/2 1
jb ja la

}
×〈s||s||s〉δla,lbδna,nb

g s
qµN ,



Electromagnetic multipole moments and transitions

where we have
< s||s ||s >=

√
3/2 ,

and

< ka||O(M1, l)||kb >=

√
3
4π

< ja||l ||jb > δna,nb
g l

q µN

=

√
3
4π

(−1)la+jb+3/2
√

(2ja + 1)(2jb + 1)

{
la lb 1
jb ja 1/2

}
×〈la||l ||lb〉δna,nb

g l
qµN ,

where
〈la||l ||lb〉 = δla,lb

√
la(la + 1)(2la + 1).

Thus the M1 operator connects only those orbitals which have the
same n and l values.



β-decay

We will now focus on allowed β-decay. Suhonen’s chapter 7 and
Alex Brown’s chapter 29 cover much of the material to be
discussed on β-decay.



β-decay

The allowed beta decay rate W between a specific set of initial and
final states is given by

Wi ,f = (f /Ko)
[
g2

V Bi ,f (F±) + g2
ABi ,f (GT±)

]
,

where f is dimensionless three-body phase-space factor which
depends upon the beta-decay Q value, and Ko is a specific
combination of fundamental constants

Ko =
2π3~7

m5
e c4 = 1.8844× 10−94erg2cm6s.

The ± signrefer to β± decay of nucleus (Ai ,Zi ) into nucleus
(Ai ,Zi ∓ 1). The weak-interaction vector (V ) and axial-vector (A)
coupling constants for the decay of neutron into a proton are
denoted by gV and gA, respectively.



β-decay
The total decay rate for a given initial state is obtained by summing
the partial rates over all final states

W =
∑

f

Wif ,

with the branching fraction to a specific final state given by

bif =
Wif

W
.

Beta decay lifetime are usually given in terms of the half-life with a
total half-life of

T1/2 =
ln(2)

W
.

The partial half-life for a particular final state will be denoted by
t1/2

t1/2 =
T1/2

bif
.



β-decay

Historically one combines the partial half-life for a particular decay
with the calculated phase-space factor f to obtain an ft value given
by

ft1/2 =
C

[B(F±) + (gA/gV )2B(GT±)]

where
C =

ln(2)Ko

(gV )2 .



β-decay

One often compiles the allowed beta decay in terms of a logft
which stands for log10 of the ft1/2 value.
The values of the coupling constants for Fermi decay, gV , and
Gamow-Teller decay, gA are obtained as follows. For a 0+ → 0+

nuclear transition B(GT ) = 0, and for a transition between T = 1
analogue states with B(F ) = 2 we find

C = 2t1/2f .

The partial half-lives and Q values for several 0+ → 0+ analogue
transitions have been measured to an accuracy of about one part in
10000. With phase space factors one obtains

C = 6170(4)

This result, together with the value of Ko can be used to obtain gV .



β-decay

At the quark level gV = −gA. But for nuclear structure we use the
value obtained from the neutron to proton beta decay

|gA/gV | = 1.261(8).



β-decay
The operator for Fermi beta decay in terms of sums over the
nucleons is

O(F±) =
∑

k

tk±.

The matrix element is

B(F ) = |〈f |T±|i〉|2,

where
T± =

∑
k

t±

is the total isospin raising and lowering operator for total isospin
constructed out of the basic nucleon isospin raising and lowering
operators

t−|n〉 = |p〉 t−|p〉 = 0,

and
t+|p〉 = |n〉, t+|n〉 = 0.



β-decay

The matrix elements obey the triangle conditions Jf = Ji

(∆J = 0). The Fermi operator has πO = +1, and thus the initial
and final nuclear states must have πiπf = +1 for the matrix
element to be nonzero under the parity transform.
When isospin is conserved the Fermi matrix element must obey the
isospin triangle condition Tf = Ti (∆T = 0), and the Fermi
operator can only connect isobaric analogue states.



β-decay

For β− decay
T−|ωi , Ji ,Mi ,Ti ,Tzi 〉

=
√

(Ti (Ti + 1)− Tzi (Tzi − 1)|ωi , Ji ,Mi ,Ti ,Tzi − 1〉,

and

B(F−) = |〈ωf , Jf ,Mf ,Tf ,Tzi − 1|T−|ωi , Ji ,Mi ,Ti ,Tzi 〉|2

= [Ti (Ti + 1)− Tzi (Tzi − 1)]δωf ,ω δJi ,Jf
δMi ,Mf

δTi ,Tf
.



β-decay

For β+ we have

B(F+) = |〈ωf , Jf ,Mf ,Tf ,Tzi + 1|T+|ωi , Ji ,Mi ,Ti ,Tzi 〉|2

= [Ti (Ti + 1)− Tzi (Tzi + 1)]δωf ,ω δJi ,Jf
δMi ,Mf

δTi ,Tf
.

For neutron-rich nuclei (Ni > Zi ) we have Ti = Tzi and thus

B(F−)(Ni > Zi ) = 2Tzi = (Ni − Zi )δωf ,ωδJi ,Jf
δMi ,Mf

δTi ,Tf
,

and
B(F+)(Ni > Zi ) = 0.



β-decay

The reduced single-particle matrix elements are given by

〈ka, p||σt−||kb, n〉 = 〈ka, n||σt+||kb, p〉 = 2〈ka||s||kb〉,

where the matrix elements of s are given by

〈ka||s||kb〉 = 〈ja||s||jb〉δna,nb

= (−1)la+ja+3/2
√

(2ja + 1)(2jb + 1)

{
1/2 1/2 1
jb ja la

}
〈s||s ||s〉δ`a,`b

δna,nb
,

with
〈s||s||s〉 =

√
3/2.



β-decay

The matrix elements of s has the selection rules δ`a,`b
and δna,nb

.
Thus the orbits which are connected by the GT operator are very
selective; they are those in the same major oscillator shell with the
same ` value. The matrix elements such as 1s1/2 − 0d3/2 which
have the allowed ∆j coupling but are zero due to the ∆` coupling
are called `-forbidden matrix elements.



β-decay

Sum rules for Fermi and Gamow-Teller matrix elements can be
obtained easily.
The sum rule for Fermi is obtained from the sum∑

f

[Bfi (F−)− Bfi (F+)] =
∑

f

[
|〈f |T−|i〉|2 − |〈f |T+|i〉|2

]
The final states f in the T− matrix element go with the
Zf = Zi + 1 nucleus and those in the T+ matrix element to with
the Zf = Zi − 1 nucleus. One can explicitly sum over the final
states to obtain∑

f

[〈i |T+|f 〉〈f |T−|i〉 − 〈i |T−|f 〉〈f |T+|i〉]

= 〈i |T+T− − T−T+|i〉 = 〈i |2Tz |i〉 = (Ni − Zi ).



β-decay

The sum rule for Gamow-Teller is obtained as follows∑
f ,µ

|〈f |
∑

k

σk,µtk−|i〉|2 −
∑
f ,µ

|〈f |
∑

k

σk,µtk+|i〉|2

=
∑
f ,µ

〈i |
∑

k

σk,µtk+|f 〉〈f |
∑

k ′

σk ′,µtk ′−|i〉

−
∑
f ,µ

〈i |
∑

k

σk,µtk−|f 〉〈f |
∑

k ′

σk ′,µtk ′+|i〉

=
∑
µ

[
〈i |

(∑
k

σk,µtk+

)(∑
k ′

σk ′,µtk ′−

)
−

(∑
k

σk,µtk−

)(∑
k ′

σk ′,µtk ′+

)
|i〉

]

=
∑
µ

〈i |
∑

k

σ2
k,µ [tk+tk− − tk−tk+] |i〉 = 3〈i |

∑
k

[tk+tk− − tk−tk+] |i〉

= 3〈i |T+T− − T−T+|i〉 = 3〈i |2Tz |i〉 = 3(Ni − Zi ).



β-decay

We have used the fact that σ2
x = σ2

y = σ2
z = 1. When k 6= k ′ the

operators commute and cancel. Thus∑
f

[Bfi (F−)− Bfi (F+)] = (Ni − Zi ),

and ∑
f

[Bfi (GT−)− Bfi (GT+)] = 3(Ni − Zi ).

The sum-rule for the Fermi matrix elements applies even when
isospin is not conserved.



β-decay

For N > Z we usually have Ti = Tzi which means that B(F+) = 0.
For N = Z (Tzi = 0) and Ti = 0 we get B(F+) = B(F−) = 0, and
for Ti = 1 we have B(F+) = B(F−) = 2. Fermi transitions which
would be zero if isospin is conserved are called isospin-forbidden
Fermi transitions.
When N > Z there are some situations where one has
B(GT+) = 0, and then we obtain B(GT−) = 3(Ni − Zi ). In
particular for the β− decay of the neutron we have B(F−) = 1 and
B(GT−) = 3.



Core-polarization

We need to say something about so-called core-polarization effects.
To do this, we have to introduce elements from many-body
perturbation theory.
We assume here that we are only interested in the ground state of
the system and expand the exact wave function in term of a series
of Slater determinants

|Ψ0〉 = |Φ0〉+
∞∑

m=1

Cm|Φm〉,

where we have assumed that the true ground state is dominated by
the solution of the unperturbed problem, that is

Ĥ0|Φ0〉 = W0|Φ0〉.

The state |Ψ0〉 is not normalized, rather we have used an
intermediate normalization 〈Φ0|Ψ0〉 = 1 since we have
〈Φ0|Φ0〉 = 1.
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The Schroedinger equation is

Ĥ|Ψ0〉 = E |Ψ0〉,

and multiplying the latter from the left with 〈Φ0| gives

〈Φ0|Ĥ|Ψ0〉 = E 〈Φ0|Ψ0〉 = E ,

and subtracting from this equation

〈Ψ0|Ĥ0|Φ0〉 = W0〈Ψ0|Φ0〉 = W0,

and using the fact that the both operators Ĥ and Ĥ0 are hermitian
results in

∆E = E −W0 = 〈Φ0|ĤI |Ψ0〉,

which is an exact result. We call this quantity the correlation
energy.



Electromagnetic multipole moments and transitions

This equation forms the starting point for all perturbative
derivations. However, as it stands it represents nothing but a mere
formal rewriting of Schroedinger’s equation and is not of much
practical use. The exact wave function |Ψ0〉 is unknown. In order
to obtain a perturbative expansion, we need to expand the exact
wave function in terms of the interaction ĤI .
Here we have assumed that our model space defined by the
operator P̂ is one-dimensional, meaning that

P̂ = |Φ0〉〈Φ0|,

and

Q̂ =
∞∑

m=1

|Φm〉〈Φm|.
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We can thus rewrite the exact wave function as

|Ψ0〉 = (P̂ + Q̂)|Ψ0〉 = |Φ0〉+ Q̂|Ψ0〉.

Going back to the Schrödinger equation, we can rewrite it as,
adding and a subtracting a term ω|Ψ0〉 as(

ω − Ĥ0

)
|Ψ0〉 =

(
ω − E + ĤI

)
|Ψ0〉,

where ω is an energy variable to be specified later.
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We assume also that the resolvent of
(
ω − Ĥ0

)
exits, that is it has

an inverse which defined the unperturbed Green’s function as(
ω − Ĥ0

)−1
=

1(
ω − Ĥ0

) .
We can rewrite Schroedinger’s equation as

|Ψ0〉 =
1

ω − Ĥ0

(
ω − E + ĤI

)
|Ψ0〉,

and multiplying from the left with Q̂ results in

Q̂|Ψ0〉 =
Q̂

ω − Ĥ0

(
ω − E + ĤI

)
|Ψ0〉,

which is possible since we have defined the operator Q̂ in terms of
the eigenfunctions of Ĥ.
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These operators commute meaning that

Q̂
1(

ω − Ĥ0

)Q̂ = Q̂
1(

ω − Ĥ0

) =
Q̂(

ω − Ĥ0

) .
With these definitions we can in turn define the wave function as

|Ψ0〉 = |Φ0〉+
Q̂

ω − Ĥ0

(
ω − E + ĤI

)
|Ψ0〉.

This equation is again nothing but a formal rewrite of Schrödinger’s
equation and does not represent a practical calculational scheme. It
is a non-linear equation in two unknown quantities, the energy E
and the exact wave function |Ψ0〉. We can however start with a
guess for |Ψ0〉 on the right hand side of the last equation.
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The most common choice is to start with the function which is
expected to exhibit the largest overlap with the wave function we
are searching after, namely |Φ0〉. This can again be inserted in the
solution for |Ψ0〉 in an iterative fashion and if we continue along
these lines we end up with

|Ψ0〉 =
∞∑

i=0

{
Q̂

ω − Ĥ0

(
ω − E + ĤI

)}i

|Φ0〉,

for the wave function and

∆E =
∞∑

i=0

〈Φ0|ĤI

{
Q̂

ω − Ĥ0

(
ω − E + ĤI

)}i

|Φ0〉,

which is now a perturbative expansion of the exact energy in terms
of the interaction ĤI and the unperturbed wave function |Ψ0〉.
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In our equations for |Ψ0〉 and ∆E in terms of the unperturbed
solutions |Φi 〉 we have still an undetermined parameter ω and a
dependecy on the exact energy E . Not much has been gained thus
from a practical computational point of view.
In Brilluoin-Wigner perturbation theory it is customary to set
ω = E . This results in the following perturbative expansion for the
energy ∆E

∆E =
∞∑

i=0

〈Φ0|ĤI

{
Q̂

ω − Ĥ0

(
ω − E + ĤI

)}i

|Φ0〉 =

〈Φ0|

(
ĤI + ĤI

Q̂

E − Ĥ0
ĤI + ĤI

Q̂

E − Ĥ0
ĤI

Q̂

E − Ĥ0
ĤI + . . .

)
|Φ0〉.
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∆E =
∞∑

i=0

〈Φ0|ĤI

{
Q̂

ω − Ĥ0

(
ω − E + ĤI

)}i

|Φ0〉 =

〈Φ0|

(
ĤI + ĤI

Q̂

E − Ĥ0
ĤI + ĤI

Q̂

E − Ĥ0
ĤI

Q̂

E − Ĥ0
ĤI + . . .

)
|Φ0〉.

This expression depends however on the exact energy E and is again
not very convenient from a practical point of view. It can obviously
be solved iteratively, by starting with a guess for E and then solve
till some kind of self-consistency criterion has been reached.
Actually, the above expression is nothing but a rewrite again of the
full Schrödinger equation.
Defining e = E − Ĥ0 and recalling that Ĥ0 commutes with Q̂ by
construction and that Q̂ is an idempotent operator Q̂2 = Q̂. Using
this equation in the above expansion for ∆E we can write the
denominator

Q̂
1

ê − Q̂ĤI Q̂
=

Q̂

[
1
ê

+
1
ê

Q̂ĤI Q̂
1
ê

+
1
ê

Q̂ĤI Q̂
1
ê

Q̂ĤI Q̂
1
ê

+ . . .

]
Q̂.
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Inserted in the expression for ∆E leads to

∆E = 〈Φ0|ĤI + ĤI Q̂
1

E − Ĥ0 − Q̂ĤI Q̂
Q̂ĤI |Φ0〉.

In RS perturbation theory we set ω = W0 and obtain the following
expression for the energy difference

∆E =
∞∑

i=0

〈Φ0|ĤI

{
Q̂

W0 − Ĥ0

(
ĤI −∆E

)}i

|Φ0〉 =

〈Φ0|

(
ĤI + ĤI

Q̂

W0 − Ĥ0
(ĤI −∆E ) + ĤI

Q̂

W0 − Ĥ0
(ĤI −∆E )

Q̂

W0 − Ĥ0
(ĤI −∆E ) + . . .

)
|Φ0〉.
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Recalling that Q̂ commutes with Ĥ0 and since ∆E is a constant we
obtain that

Q̂∆E |Φ0〉 = Q̂∆E |Q̂Φ0〉 = 0.

Inserting this results in the expression for the energy results in

∆E = 〈Φ0|

(
ĤI + ĤI

Q̂

W0 − Ĥ0
ĤI + ĤI

Q̂

W0 − Ĥ0
(ĤI −∆E )

Q̂

W0 − Ĥ0
ĤI + . . .

)
|Φ0〉.
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We can now this expression in terms of a perturbative expression in
terms of ĤI where we iterate the last expression in terms of ∆E

∆E =
∞∑

i=1

∆E (i).

We get the following expression for ∆E (i)

∆E (1) = 〈Φ0|ĤI |Φ0〉,

which is just the contribution to first order in perturbation theory,

∆E (2) = 〈Φ0|ĤI
Q̂

W0 − Ĥ0
ĤI |Φ0〉,

which is the contribution to second order.
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∆E (3) = 〈Φ0|ĤI
Q̂

W0 − Ĥ0
ĤI

Q̂

W0 − Ĥ0
ĤI Φ0〉−〈Φ0|ĤI

Q̂

W0 − Ĥ0
〈Φ0|ĤI |Φ0〉

Q̂

W0 − Ĥ0
ĤI |Φ0〉,

being the third-order contribution.



Learning outcomes

I hope this is not the case



Topics we have covered this year

I Single-particle properties and mean-field and relation to data
I How to set up basis states in second quantization and find

expectation values
I Angular momentum properties and the Wigner-Eckart theorem
I Short survey of properties of nuclear forces
I The nuclear shell model
I And how to relate a shell-model calculation to decays and

properties of decays.



Final presentation

I Introduction with motivation
I Explain an eventual experimental set up
I Give a short overview of the theory employed and how it

relates to the analysis of eventual data
I Present and discuss your results
I Summary, conclusions and perspectives
I Anything else you think is important. Useful to have backup

slides

In total your talk should have a duration of 20-25 minutes, but
longer is also ok.



What? Me worry?



Best wishes to you all and thanks so much for your efforts
this semester


