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‘ Phenomenology of nuclear forces
From Yukawa to Lattice QCD and Effective Field Theory

o Chadwick (1932) discovers the neutron and Heisenberg (1932)
proposes the first Phenomenology (Isospin).

@ Yukawa (1935) and his Meson Hypothesis

o Discovery of the pion in cosmic ray (1947) and in the Berkeley
Cyclotron Lab (1948).

o Nobelprize awarded to Yukawa (1949). Rabi (1948) measures
quadrupole moment of the deuteron.

o Taketani, Nakamura, Sasaki (1951): 3 ranges.
One-Pion-Exchange (OPE): o.k.

@ Multi-pion exchanges: Problems! Taketani, Machida, Onuma
(1952);

@ Pion Theories Brueckner, Watson (1953).

‘ Phenomenology of nuclear forces
From Yukawa to Lattice QCD and Effective Field Theory

e 1990's
o 1993-2001: High-precision NN potentials: Nijmegen I, Il, '93,
Reid93 (Stoks et al. 1994),
o Argonne V18 (Wiringa et al, 1995), CD-Bonn (Machleidt et
al. 1996 and 2001.
o Advances in effective field theory: Weinberg (1990); Ordonez,
Ray, van Kolck and many more.

o 3rd Millenium

o Another "pion theory"; but now right: constrained by chiral
symmetry. Three-body and higher-body forces appear naturally
at a given order of the chiral expansion.

Nucleon-nucleon interaction from Lattice QCD, final confirmation
of meson hypothesis of Yukawa? See for example Ishii et al, PRL
2007

‘ Components of the force and isospin

The nuclear forces are almost charge independent. If we assume
they are, we can introduce a new quantum number which is
conserved. For nucleons only, that is a proton and neutron, we can
limit ourselves to two possible values which allow us to distinguish
between the two particles. If we assign an isospin value of 7 =1/2
for protons and neutrons (they belong to an isospin doublet, in the
same way as we discussed the spin 1/2 multiplet), we can define
the neutron to have isospin projection 7, = +1/2 and a proton to
have 7, = —1/2. These assignements are the standard choices in
low-energy nuclear physics.

‘ Phenomenology of nuclear forces

From Yukawa to Lattice QCD and Effective Field Theory

@ Many pions = multi-pion resonances: ¢(600), p(770), w(782)
etc. One-Boson-Exchange Model.

o Refined Meson Theories

o Sophisticated models for two-pion exchange:

o Paris Potential (Lacombe et al., Phys. Rev. C 21, 861 (1980))
o Bonn potential (Machleidt et al., Phys. Rep. 149, 1 (1987))

*Quark cluster models. Begin of effective field theory studies.

‘ Phenomenology of nuclear forces

Features of the Nucleon-Nucleon (NN) Force

The aim is to give you an overview over central features of the
nucleon-nucleon interaction and how it is constructed, with both
technical and theoretical approaches.

@ The existence of the deuteron with J™ = 17 indicates that the
force between protons and neutrons is attractive at least for
the 3S; partial wave. Interference between Coulomb and
nuclear scattering for the proton-proton partial wave 1Sy shows
that the NN force is attractive at least for the 1Sy partial wave.

o It has a short range and strong intermediate attraction.

o Spin dependent, scattering lengths for triplet and singlet states
are different,

o Spin-orbit force. Observation of large polarizations of scattered
nucleons perpendicular to the plane of scattering.




‘ Phenomenology of nuclear forces

o Strongly repulsive core. The s-wave phase shift becomes
negative at ~ 250 MeV implying that the singlet S has a hard
core with range 0.4 — 0.5 fm.

Charge independence (almost). Two nucleons in a given
two-body state always (almost) experience the same force.
Modern interactions break charge and isospin symmetry lightly.
That means that the pp, neutron-neutron and pn parts of the
interaction will be different for the same quantum numbers.
Non-central. There is a tensor force. First indications from the
quadrupole moment of the deuteron pointing to an admixture
in the ground state of both / =2 (3D;) and / =0 (35;)
orbital momenta.

‘ Phenomenology of nuclear forces

Charge Dependence

o After correcting for the electromagnetic interaction, the forces
between nucleons (pp, nn, or np) in the same state are almost
the same.

Almost the same: Charge-independence is slightly broken.

Equality between the pp and nn forces: Charge symmetry.

Equality between pp/nn force and np force: Charge
independence.

Better notation: Isospin symmetry, invariance under rotations
in isospin

‘ Symmetries of the Nucleon-Nucleon (NN) Force

@ Translation invariance

o Galilean invariance

@ Rotation invariance in space

o Space reflection invariance

o Time reversal invariance

@ Invariance under the interchange of particle 1 and 2
@ Almost isospin symmetry

‘ Phenomenology of nuclear forces

Short Range Evidence

Comparison of the binding energies of 2H (deuteron), 3H (triton),
“He (alpha - particle) show that the nuclear force is of finite range
(1 —2 fm) and very strong within that range.

For nuclei with A > 4, the energy saturates: Volume and binding
energies of nuclei are proportional to the mass number A (as we
saw from exercise 1).

Nuclei are also bound. The average distance between nucleons in
nuclei is about 2 fm which must roughly correspond to the range of
the attractive part.

‘ Phenomenology of nuclear forces

Charge Dependence, 1Sy Scattering Lengths

Charge-symmetry breaking (CSB), after electromagnetic effects
have been removed:
o app = —17.3+ 0.4fm
® ap, = —18.8 &+ 0.5fm. Note however discrepancy from nd
breakup reactions resulting in a,, = —18.72 £ 0.13 & 0.65fm
and 7~ + d — 7 + 2n reactions giving
ann = —18.93 £+ 0.27 £ 0.3fm.
Charge-independence breaking (CIB)
@ ap, = —23.74 £ 0.02fm

‘ A typical form of the nuclear force

Here we display a typical way to parametrize (non-relativistic
expression) the nuclear two-body force in terms of some operators,
the central part, the spin-spin part and the central force.

3 3
V(r) =4 C+ Cor- Cr1+—=2—+_ = _ 3
(r) { + Coo1-02+ r( ot (m(,r)z) S12(F)
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How do we derive such terms? (Note: no isospin dependence and
that the above is an approximation)




‘ Nuclear f

To derive the above famous form of the nuclear force using field
theoretical concepts, we will need some elements from relativistic
quantum mechanics. These derivations will be given below. The
material here gives some background to this. | know that many of
you have not taken a course in quantum field theory. | hope
however that you can see the basic ideas leading to the famous
non-relativistic expressions for the nuclear force.

Furthermore, when we analyze nuclear data, we will actually
try to explain properties like spectra, single-particle energies
etc in terms of the various terms of the nuclear force.
Moreover, many of you will hear about these terms at
various talks, workshops, seminars etc. Then, it is good to
have an idea of what people actually mean!!

m numbers

‘ Components of the force and

But before we proceed, we will look into specific quantum numbers
of the relative system and study expectation vaues of the various
terms of

3 3
V(r)=4qC+ Cor - Cr1+ 2+ = _ 3
(r) { + Goo1- 02+ T( + o + (mur)2> S12(7)

—mar
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‘ Relative

In a similar fashion we can define the CoM coordinate
A
1
R= 2 Z Tiy
i=1
and the relative distance

rij = (ri — ;).

Baryons Mass (MeV) Mesons Mass (MeV)

P 038.026 ™ 138.03
A 1116.0 n 548.8
b 1197.3 o ~ 550.0
A 1232.0 o 770

w 782.6
5 983.0
K 495.8
K* 895.0

im numbers

‘ Relative and CoM system, qua

When solving the scattering equation or solving the two-nucleon
problem, it is convenient to rewrite the Schroedinger equation, due
to the spherical symmetry of the Hamiltonian, in relative and
center-of-mass coordinates. This will also define the quantum
numbers of the relative and center-of-mass system and will aid us
later in solving the so-called Lippman-Schwinger equation for the
scattering problem.

We define the center-of-mass (CoM) momentum as

with i = ¢ = 1 the wave number k; = p;, with p; the pertinent
momentum of a single-particle state. We have also the relative

momentum 1

We will below skip the indices ij and simply write k

k,'j:

‘ Relative and CoM system, im numbers
With the definitions B
K=Y ki
i=1
and
1
k,‘j = E(kl = kj)4

we can rewrite the two-particle kinetic energy (note that we use
h=c=1as @ 2 @ K2
i, % _
2m, ' 2m, m, 4m,’

where m,, is the average of the proton and the neutron masses.




m numbers

‘ Relative and CoM system, qu

Since the two-nucleon interaction depends only on the relative
distance, this means that we can separate Schroedinger's equation
in an equation for the center-of-mass motion and one for the
relative motion.

With an equation for the relative motion only and a separate one
for the center-of-mass motion we need to redefine the two-body
quantum numbers.

Previously we had a two-body state vector defined as |(jij2)JM,) in
a coupled basis. We will now define the quantum numbers for the
relative motion. Here we need to define new orbital momenta
(since these are the quantum numbers which change). We define

h+bh=X=T+10,

where [ is the orbital momentum associated with the relative
motion and L the corresponding one linked with the CoM. The
total spin S is unchanged since it acts in a different space. We
have thus that

I I

m numbers

‘ Components of the force
The tensor force is given by

" 3
Su(f)= 5 (o1-r)(02-1) —o1-02

where the Pauli matrices are defined as

{01
=41l @)ff?

f1 0
=0 —1f°

with the properties o = 2S (the spin of the system, being 1/2 for
nucleons), 02 = 02 = 0, = 1 and obeying the commutation and
anti-commutation relations {o,0,} = 0 [0, 0,] = 10, etc.

tum numbers

‘ Components of the force an

Similarly, the expectation value of the spin-orbit term is

(IS) == (J(J+1)—I(I+1)—S(S+1)),

1
2
which means that for s-waves with either S = 0 and thereby J =0
or S=1and J =1, the expectation value for the spin-orbit force is
zero. With the above phenomenological model, the only
contributions to the expectation value of the potential energy for
s-waves stem from the central and the spin-spin components since
the expectation value of the tensor force is also zero.

‘ Phenomenology of nuclear forces

The total two-nucleon state function has to be anti-symmetric. The

total function contains a spatial part, a spin part and an isospin

part. If isospin is conserved, this leads to in case we have an s-wave

with spin S = 0 to an isospin two-body state with T = 1 since the

spatial part is symmetric and the spin part is anti-symmetric.

Since the projections for T are T, = —1,0, 1, we can have a pp, an

nn and a pn state.

For /=0and S =1, a so-called triplet state, 3S;, we must have

T = 0, meaning that we have only one state, a pn state. For other

partial waves, the following table lists states up to f waves. We can

systemize this in a table as follows, recalling that

-S| <P <1+5],
=T J T _Ipp) lpn) nn)

IS
TSo 0 0 0 1 yes yes yes
35, 1 0 1 0 no yes no
3P 0 1 1 1 yes yes yes
1p 1 1 0 0 no yes no
3p, 1 1 1 1 |yes yes yes
3p, 2 1 1 1 yes yes  yes
12 1 0

no ves no

um numbers

‘ Components of the force and q

When we look at the expectation value of (o1 - 02), we can rewrite
this expression in terms of the spin S = s; + sy, resulting in

(01-02) =2(S2 — 62 —s2) =25(S+1) - 3,
where we s; = s, = 1/2 leading to

(o1-02) =1 if §=
(o1-02)=—-3 if S

um numbers

‘ Components of the force and q

For s = 1/2 spin values only for two nucleons, the expectation

value of the tensor force operator is
7

! J+1 J J-1
2J(J+2) 6/J(0+1)
J+1 - 0 2741
J 0 2 0
64/J(J+1) 2(2J+1)
J-1 2741 0~

We will derive these expressions after we have discussed the
Wigner-Eckart theorem.




‘ Components of the force and isospin

If we now add isospin to our simple V4 interaction model, we end
up with 8 operators, popularly dubbed Vg interaction model. The
explicit form reads

3 3
V(r)= {CC+C001'0-2+CT (1+7+72
mar— (mqr)

it
sea (4t Ji.sle
2
mar " (mar) mar

+ {CCT + Coro1-02+ Cr7 (1 + = + - 2) S12(P)
mar  (mgr)

1 1 —mar
+Csir (7+ )L~S}7'1~T2em

) S12(F)

mar  (mgr)? e

‘ Phenomenology of nuclear forces

The total two-nucleon state function has to be anti-symmetric. The
total function contains a spatial part, a spin part and an isospin
part. If isospin is conserved, this leads to in case we have an s-wave
with spin S = 0 to an isospin two-body state with T = 1 since the
spatial part is symmetric and the spin part is anti-symmetric.

Since the projections for T are T, = —1,0, 1, we can have a pp, an
nn and a pn state.

For / =0 and S = 1, a so-called triplet state, 3S;, we must have

T = 0, meaning that we have only one state, a pn state. For other
partial waves, see exercises below.

‘ Phenomenology of nuclear forces

Let us look closer at specific partial waves for which one-pion
exchange is applicable. If we have S =0 and T = 0, the orbital
momentum has to be an odd number in order for the total
anti-symmetry to be obeyed. For S = 0, the tensor force
component is zero, meaning that the only contribution is

3f2 e=mar
Va(r) = ">
4Ttms myr
since (01 - 02) = —3, that is we obtain a repulsive contribution to

partial waves like 1P;.

‘ Phenomenology of nuclear forces

References for Various Phenomenological Interactions

From 1950 till approximately 2000: One-Boson-Exchange (OBE)
models dominate. These are models which typically include several
low-mass mesons, that is with masses below 1 GeV. Potentials
which are based upon the standard non-relativistic operator
structure are called "Phenomenological Potentials" Some
historically important examples are
o Gammel-Thaler potential ( Phys. Rev. 107, 291, 1339 (1957)
and the
o Hamada-Johnston potential, Nucl. Phys. 34, 382 (1962)),
both with a hard core.
o Reid potential (Ann. Phys. (N.Y.) 50, 411 (1968)), soft core.
o Argonne V4 potential (Wiringa et al., Phys. Rev. C 29, 1207
(1984)) with 14 operators and the Argonne Vig potential
(Wiringa et al., Phys. Rev. C 51, 38 (1995)), uses 18
operators
o A good historical reference: R. Machleidt, Adv. Nucl. Phys.

‘ Phenomenology of nuclear forces

Phenomenology of one-pion exchange

The one-pion exchange contribution (see derivation below), can be
written as

2 1 3 3 NE:
Vw("):—Wﬁ‘ng o102+ 1+ﬁ+m S12(P)

Here the constant £2/4m =2 0.08 and the mass of the pion is
my & 140 MeV/c2.

‘ Phenomenology of nuclear forces

Since S = 0 yields always a zero tensor force contribution, for the
combination of T =1 and then even / values, we get an attractive
contribution

£2 gmmar
n

Arm2 myr

Vi(r) =

With S=1and T =0, / can only take even values in order to
obey the anti-symmetry requirements and we get

2 3 3 e~ mrr
V)= (141 + >+ > )sp()) &,
) Arm2 ( +(1+ myr i (mﬂr))z)su(r)> mer

while for S =1 and T =1, / can only take odd values, resulting in
a repulsive contribution

1 f2 3 3 N e
Vi(r) = 302 (1 +(1+ T m)—%z“)) o




‘ Phenomenology of nuclear forces

The central part of one-pion exchange interaction, arising from the
spin-spin term, is thus attractive for s-waves and all even / values.
For p-waves and all other odd values it is repulsive. However, its
overall strength is weak. This is discussed further in one of
exercises below.

Models for nuclear forces and derivation of non-relativistic

expressions

For spin 1/2 baryons, the fields W are expanded in terms of the
Dirac spinors (positive energy solution shown here with Tu = 1)

(ko) = [E(K) + m X
- 2m ok
E(k)+mX

with x the familiar Pauli spinor and E(k) = \/m? + |k|2. The
positive energy part of the field W reads

V(x) = ﬁ ; u(ko) exp —(ikx)aks,

with a being a fermion annihilation operator.

Models for nuclear forces and derivation of non-relativistic

‘ Models for nuclear forces and derivation of non-relativistic

expressions

To describe the interaction between the various baryons and
mesons of the previous table we choose the following
phenomenological lagrangians for spin 1/2 baryons

Lps = gP U WelP),
Ls =g Wuol),
and
L, =g Wy o) + g Vo' (ﬁm.‘f] — B¢ ’) ,

for pseudoscalar (ps), scalar (s) and vector (v) coupling,
respectively. The factors g¥ and gt are the vector and tensor
coupling constants, respectively.

Models for nuclear forces and derivation of non-relativistic

expressions

Expanding the free Dirac spinors in terms of 1/m (m is here the
mass of the relevant baryon) results, to lowest order, in the familiar
non-relativistic expressions for baryon-baryon potentials. The
configuration space version of the interaction can be approximated
as

3
V(r)=<C2+ Ct+ Coo1-02+ C (1+—+—
(r) {c € 00102 T Mar (mar)z

+Cat <L+ ! 2)L<s}exp*(’""')7
mar — (mgyr) mar

where m,, is the mass of the relevant meson and Si; is the familiar
tensor term.

) S12(F)

Models for nuclear forces and derivation of non-relativistic

expressions

We derive now the non-relativistic one-pion exchange interaction.
Here p1, p}, p2, p5 and k = py — p; denote four-momenta. The
vertices are given by the pseudovector Lagrangian

£ _
Loy = —P757u1p0" ¢r.
My
From the Feynman diagram rules we can write the two-body
interaction as

2 a(p1)v57u(p1 — P u(p1)a(ps) 57w (Ph — P2)” u(p2)

=
m3 (pr—pi)? —m2

expressions

The factors py — p; = py — p» are both the four-momentum of the
exchanged meson and come from the derivative of the meson field
in the interaction Lagrangian. The Dirac spinors obey

Yuptu(p) = mu(p)
a(p)yup” = mu(p).




Models for nuclear forces and derivation of non-relativistic

expressions

Using these relations, together with {vs,7,} = 0, we find

(P )sulpr — 1) u(pl) = mu(pi)su(pr) + a(p)yupr Vs u(pi)

2mu(py)ysu(pr)

and
(po)ysu(py — p2) = —2mu(py)ysu(pr).

Models for nuclear forces and derivation of non-relativistic

expressions

Similarly

w(ph)ysulp2) = (Eé+m)(E2+m)(02‘p2 Uz‘plz).

4m? E2+m_E2’+m

In the CM system we have p, = —p1, p’, = —p'; and so E, = £,

Ej = E{. We can then write down the relativistic contribution to
the NN potential in the CM system:

R - 1 (Es+m)(E{ +m)

m2 " (p1— pi)? —m? 4m?

» 01‘P1701‘P/1 02‘P1702'P’1
Ei+m E+m Ei+m E+m/)’

Models for nuclear forces and derivation of non-relativistic

expressions

We get

Yo = £ g W supr) s o u(pn)
m2 (pr—p1)? —m2

By inserting expressions for the Dirac spinors, we find
(E{ + m)(E1 + m)

_ P 0
(e )su(pr) = A (g ) (]

X
2 P
( BrmX )

(E; + m)(Ex + m) (01~P1 Ul'Pﬁ)

4m? E1+m_E1’+m

)

Models for nuclear forces and derivation of non-relativistic

expressions

We have

VPY(k) = —-

£2 (91 - k)(02 - k)
m2  k2+m2

In coordinate space we have

3 ;
v - [ (ZWI)(Se’k'VPV(k)

resulting in

Pk 4 1

f2 P
VvPv = i 2\ -V —_— —_—
(r) m?, o o2 / (271')3 € k2 + '7’72r

Models for nuclear forces and derivation of non-relativistic

expressions

In the non-relativistic limit we have to lowest order

Ey=y\/p}+m~m~ Ef

and then (p1 — p})? = —k?, so we get for the contribution to the
NN potential

£2 1 2m-2m o )
VPY _ g - e L —_pl)==. _p
m2 " @ e 4 2m Py pl)2m (1 =P

12 (01-K)(02-k)
m2 k24 mz

We have omitted exchange terms and the isospin term 71 - 7.

Models for nuclear forces and derivation of non-relativistic

expressions

We obtain
f2 e~ Mxr
VPY(r) = ——01-Vop-V
mz r

Carrying out the differentation of

£ e—mr
—T01-Voa-V
=

VP(r) =

m: r

we arrive at the famous one-pion exchange potential with central
and tensor parts

2

“m,

£z 3 3 o | exp
V(r)= —m—% {C,ol -0+ Cr <1 + ot + (mar)Q) 512(r)} "

For the full potential add the exchange part and the 71 - 7> term as
well. (Subtle point: there is a divergence which gets cancelled by

using cutoffs) This leads to coefficients C, and Ct which are fitted
to data




Models for nuclear forces and derivation of non-relativistic Models for nuclear forces and derivation of non-relativistic

expressions expressions

When we perform similar non-relativistic expansions for scalar and
vector mesons we obtain for the o meson

1 q? k2 LS
Vo — o2 1 B B '
8oNN 1@ 1 m2 ( Mg T Mg T 2,

We note an attractive central force and spin-orbit force. This term

has an intermediate range. We have defined 1/2(p1 + p}) = q. For
the full potential add the exchange part and the isospin dependence
as well.

Models for nuclear forces and derivation of non-relativistic

expressions

We obtain for the w meson

1 LS
w _ 2 _
V= somia e (1 32M,2\,)‘

We note a repulsive central force and an attractive spin-orbit force.
This term has short range. For the full potential add the exchange
part and the isospin dependence as well.

Models for nuclear forces and derivation of non-relativistic
expressions

Finally for the p meson

VP =g? L (—20102 + 512(/2)) TLT2.
PN 2 | mf,

We note a tensor force with sign opposite to that of the pion. This
term has short range. For the full potential add the exchange part
and the isospin dependence as well.

‘ The Lippman-Schwinger equation for two-nucleon scatterin

What follows now is a more technical discussion on how we can
solve the two-nucleon problem. This will lead us to the so-called
Lippman-Schwinger equation for the scattering problem and a
rewrite of Schroedinger’s equation in relative and center-of-mass
coordinates.

Before we break down the Schroedinger equation into a partial
wave decomposition, we derive now the so-called
Lippman-Schwinger equation. We will do this in an operator form
first. Thereafter, we rewrite it in terms of various quantum
numbers such as relative momenta, orbital momenta etc. The
Schroedinger equation in abstract vector representation is

(Fo+ V) i) = Enlitn)-

In our case for the two-body problem Hj is just the kinetic energy.
We rewrite it as

(/—”/0 - E,.) [¥n) = —V[tbn).

o Can use a one-boson exchange picture to construct a
nucleon-nucleon interaction a la QED

Non-relativistic approximation yields amongst other things a
spin-orbit force which is much stronger than in atoms.
At large intermediate distances pion exchange dominates while
pion resonances (other mesons) dominate at intermediate and
short range
o Potentials are parameterized to fit selected two-nucleon data,
binding energies and scattering phase shifts.

Nowaydays, chiral perturbation theory gives an effective theory
that allows a systematic expansion in terms of contrallable
parameters. Good basis for many-body physics

-Schwinger equation for two-nucleon scattering

The equation
1

is normally solved in an iterative fashion. We assume first that

V]thn),

[vn) = |6n),
where |¢,) are the eigenfunctions of
Foln) = wnldn)

the so-called unperturbed problem. In our case, these will simply be
the kinetic energies of the relative motion.




The Lippman-Schwinger equation for two-nucleon scattering

The Lippman-Schwinger equation for two-nucleon scattering

Inserting |¢n) on the right-hand side of

1 ~

Yn) = ———=—V|vn),

i (En — Ho) i
yields

1 S
[¥n) = |¢n) + 7~ VI¢n),
G A)
as our first iteration. Reinserting again gives
7 1 - 1 ~ 1 5
[1hn) = |én) + —V|én) + ~—V —-V|on),
(En— o) (En—Fo) ~ (En— Fo)

and continuing we obtain

S 1,
|wn>—z LE 7/_70)V

It is easy to see that

o0 1 R
[¥n) :2 |:(En*’:/0)v

i=0

[¢n),

can be rewritten as

Logfie -t vy 1y 1ly
(En — Ho) (En — Ho) (En— Ho)  (En— Hb)

[¥n) = |@n)+
which we rewrite as

[9hn) = |dn) + Vton).

1
(En - ":IO)

The Lippman-Schwinger equation for two-nucleon scattering

The Lippman-Schwinger equation for two-nucleon scattering

In operator form we have thus

1 5
[1hn) = |én) + m”ﬂ’ﬂ

We multiply from the left with V' and (¢m| and obtain

mMm:me+mWE%%mm

We define thereafter the so-called T-matrix as
(@ml Tlén) = (Sm| VIifn)-

We can rewrite our equation as

—T4n).

ool ) = (6|7 g1
(&m| T|dn) = (&m|V|dn) + (¢m|V(En ~ 7o)

The equation

~ ~ ~ 1 o
(&ml T|dn) = (bm|VIn) + <¢m\V7(E" ) T|¢n),
is called the Lippman-Schwinger equation. Inserting the
completeness relation

1=""16a)(0nl, (@alw) = Onm
we have

(Dm| T1dn) = (Dm|VIon) + > (6m| V]ox) (6k| T\ ),

v
2 (En — wk)

which is (when we specify the state |¢,)) an integral equation that
can actually be solved by matrix inversion easily! The unknown
quantity is the T-matrix.

The Lippman-Schwinger equation for two-nucleon scattering

The Lippman-Schwinger equation for two-nucleon scattering

Now we wish to introduce a partial wave decomposition in order to
solve the Lippman-Schwinger equation. With a partial wave
decomposition we can reduce a three-dimensional integral equation
to a one-dimensional one.

Let us continue with our Schroedinger equation in the abstract
vector representation

(T + V) [¥n) = Enlton)

Here T is the kinetic energy operator and V is the potential
operator. The eigenstates form a complete orthonormal set
according to

1= [$n)(¥nl, (Wnlthw) = Onw

The most commonly used representations are the coordinate and
the momentum space representations. They define the
completeness relations

1= /dr\r><r|, Iy = 3(r = v')
1= /dk\k)(k\, (K[K) = 3(k — K)

Here the basis states in both r- and k-space are dirac-delta function
normalized. From this it follows that the plane-wave states are
given by,

3/2
(r|k) = (%) exp (ik - r)

which is a transformation function defining the mapping from the
abstract |k) to the abstract |r) space.
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That the r-space basis states are delta-function normalized follows
from

3
8(r—v) = (rF) = (1l¥) = / dk{rlk) (k') = (}) / dkelke=r)
™
and the same for the momentum space basis states,

3
5(k—K') = (kIK') = (K[1|K') = / dr(kr) (r|K) = (%) / dreie

=

Projecting on momentum states, we obtain the momentum space
Schroedinger equation as

h2k2 k dk'V/(k, k") ihn(K') = Enthn(k 1
3ok + [ AV = Bl ()
Here the notation 1,(k) = (k|¢n) and (k|V|k') = V(k, k) has

been introduced. The potential in momentum space is given by a
double Fourier-transform of the potential in coordinate space, i.e.

3
V(k, k') = (%) /dr/dr’expfikrV(r., r')expik'r’

The Lippman-Schwinger equation for two-nucleon scattering

Here it is assumed that the potential interaction does not contain
any spin dependence. Instead of a differential equation in
coordinate space, the Schroedinger equation becomes an integral
equation in momentum space. This has many tractable features.
Firstly, most realistic nucleon-nucleon interactions derived from
field-theory are given explicitly in momentum space. Secondly, the
boundary conditions imposed on the differential equation in
coordinate space are automatically built into the integral equation.
And last, but not least, integral equations are easy to numerically
implement, and convergence is obtained by just increasing the
number of integration points. Instead of solving the
three-dimensional integral equation, an infinite set of 1-dimensional
equations can be obtained via a partial wave expansion.
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The wave function ¥,(k) can be expanded in a complete set of
spherical harmonics, that is

Vrinll) = [ AR Ryin(K),
@)

By inserting equation (2) in equation (1), and projecting from the
left Yjm(k), the three-dimensional Schroedinger equation (1) is
reduced to an infinite set of 1-dimensional angular momentum
coupled integral equations,

Un(k) = Gnim(k) Yim(K)
Im

2 -
(2*“/(2 = Enlm) Ynim(k) = — Z/ k'K Vi, 10 (K, K Yo (K
e J0

©)
where the angular momentum projected potential takes the form,

Vit (K, K) = /dﬂ/di/v,;(ﬂ)v(kk')v,,m,(i’) )

Schwinger equation for two-nucleon scattering

The potential is often given in position space. It is then convenient
to establish the connection between Vi, yny(k, k) and

Vim.rme (r, r'). Inserting the completeness relation for the position
quantum numbers in equation (4) results in

v= [ae o { [ avitiomn | evier { [ ok vinye )

(®)

Since the plane waves depend only on the absolute values of
position and momentum, |k| and |r|, and the angle between them,
Okr, they may be expanded in terms of bipolar harmonics of zero
rank, i.e.

exp (ik 1) = 47ri i'ji(kr) (Y,(/?) 3 Y,(P)) = i(2/+1)i'j,(kr)P,(cos()k,
1=0 1=0

where the addition theorem for spherical harmonics has been used
in order to write the expansion in terms of Legendre polynomials.
The spherical Bessel functions, ji(z), are given in terms of Bessel
functions of the first kind with half integer orders,

Ji(z) = \/ng/z(Z)-
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The connection between the momentum- and position space
Inserting the plane-wave expansion into the brackets of angular momentum projected potentials are then given,

equation (5) yields, 2 - ~

o — 2. .

o Vit (i) = 211 [~ [ k) Vi o iK'

A e o (73 0 0

Jakvihnan = (55) a0,

4 which is known as a double Fourier-Bessel transform. The position

‘ ; 1\ | t jected potential is given b
/dk/ Y/m(k/)(l"/“(/> _ (ﬁ) 47Tl'lj//(k,f,)Y//m/(f), space angular momentum projected potential 1s given by

Vi (1, F) = / dr / APV PV F) Vi (7).
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No assumptions of locality/non-locality and deformation of the

interaction has so far been made, and the result in equation (62) is
general. In position space the Schroedinger equation takes form of
an integro-differential equation in case of a non-local interaction, in

momentum space the Schroedinger equation is an ordinary integral and equation (62) reduces to

equation of the Fredholm type, see equation (3). This is a further , Ry = o o
advantage of the momentum space approach as compared to the Vi, (k, K') = Pl /0 drr®jy(kr) Vim,pay (r)ji (K'r) (7)
standard position space approach. If we assume that the interaction
is of local character, i.e. where

_— Vit (1) = [ Vi)V Vi (2) ®

(rlV|Fy = V(r)§(r—r) = V(r)’Td(cosﬁ —cos8)5(¢ — '),

then equation (62) reduces to

Vimim(r:) = 22 [ 68 iV @ Yom (D) (6)

The Lippman-Schwinger equation for two-nucleon scattering i Schwinger equation for two-nucleon scattering

For a local and spherical symmetric potential, the coupled
momentum space Schroedinger equations given in equation (3)

In the case that the interaction is central, V/(r) = V/(r), then decouples in angular momentum, giving
SV (16 5 2 oo
Vim, it (r) = V(’)/dfyrm(f)ylfm'(’) = V()81,10mm,  (9) Zkzwn/(k)Jr/ dK K2 Vi(k, K Ybni(K') = Entom(K) — (12)
0
and Where we have written t,(k) = ¥nim(k), since the equation
, 2, a o . , . becomes independent of the projection m for spherical symmetric
Vim,rmr (k; k') = ;/0 drrji(kr)V(r)ji (K'r)81,100m,mr = Vi(k, K')011rOm, o interactions. The momentum space wave functions 1,(k) defines a
(10) complete orthogonal set of functions, which spans the space of
where the momentum space representation of the interaction finally functions with a positive finite Euclidean norm (also called
reads, P-norm), /(¥bn[t0n), which is a Hilbert space. The corresponding
2 [ . . normalized wave function in coordinate space is given by the
Vitk, Ky = = | dr 2 ji(kr)V(r)ji(K'r). 1 P given by
i ) 77/0 rriikn)V(rii(K'r) (11) Fourier-Bessel transform

() = \/g/dkkzj;(kr)wnl(k)
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We will thus assume that the interaction is spherically symmetric
and use the partial wave expansion of the plane waves in terms of
spherical harmonics. This means that we can separate the radial
part of the wave function from its angular dependence. The wave
function of the relative motion is described in terms of plane waves
as

oxp (tkr) = (rlk) = 47 > /i (kr) Yim (k) Yim (),
Im

where Jj is a spherical Bessel function and Y},, the spherical
harmonics.

In terms of the relative and center-of-mass momenta k and K, the
potential in momentum space is related to the nonlocal operator

V(r,r') by

(KK'|VIKK) = / drdr’ exp —(:k'r' )V (v, r) exp 1krd (K, K').
We will assume that the interaction is spherically symmetric. Can
separate the radial part of the wave function from its angular
dependence. The wave function of the relative motion is described

in terms of plane waves as

exp (tkr) = (r|k) = 47 Z z’j,(kr)Y,’,‘n(ﬁ) Yim(?),
Im

where Jjj is a spherical Bessel function and Yj,, the spherical
harmonic.

The Lippman-Schwinger equation for two-nucleon scattering

This partial wave basis is useful for defining the operator for the
nucleon-nucleon interaction, which is symmetric with respect to
rotations, parity and isospin transformations. These symmetries
imply that the interaction is diagonal with respect to the quantum
numbers of total relative angular momentum 7, spin S and isospin
T (we skip isospin for the moment). Using the above plane wave
expansion, and coupling to final 7 and S and T we get

KIVIky = (@2 3 Y (R) Vi (K)

ST mym; T
(Im;Smg| T M)(I'my Sms| T M) (K'I'ST M|V |kIST M),
where we have defined

(KI'STM|V|KIST M) = /j,/(k’r’)(/’S]MW(r’,r)\lS]M)j,(kr)r"dr’rz

We have omitted the momentum of the center-of-mass motion K
and the corresponding orbital momentum L, since the interaction is

The Lippman-Schwinger equation for two-nucleon scattering

We wrote the Lippman-Schwinger equation as

(Dm| T1n) = (Dm| VIgn) + > (6| V]x) {0k T|gn)-
k

1
(En — wi)

How do we rewrite it in a partial wave expansion with momenta k?

The Lippman-Schwinger equation for two-nucleon scattering

The general structure of the T-matrix in partial waves is

o (kK Kw) = Vi5(kK')

oo Vit (@) Yirmy (8) Ve (kq) T8 (4
2 / da(mp sl gy mn OV me Vit ) [
0 w—Ho
1 my Ms
(13)

Schwinger equation for two-nucleon scattering

The shorthand notation
Tii(kk'Kw) = (kKILT S| T (w)|K'KI'LT S),

denotes the T-matrix with momenta k and k" and orbital momenta
I and /I’ of the relative motion, and K is the corresponding
momentum of the center-of-mass motion. Further, L, 7, S and T
are the orbital momentum of the center-of-mass motion, the total
angular momentum, spin and isospin, respectively. Due to the
nuclear tensor force, the interaction is not diagonal in /I’
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Using the orthogonality properties of the Clebsch-Gordan
coefficients and the spherical harmonics, we obtain the well-known
one-dimensional angle independent integral equation

2 ‘//7'/(’(‘1)7—/(7('/'(‘7’("@0)‘

b
o / vl =l
T (kK Kw) = V(KK + = Ew:/o e T

Inserting the denominator we arrive at

A ~ 2 o - 1
Ti(kk'K) = V/ﬁ("k/)ﬂL; Z/o dqq” \/,T/,(kq)m Tinp(q
Iz

'K).

To parameterize the nucleon-nucleon interaction we solve the
Lippman-Scwhinger equation

2 o 1
) = Vi) 25 | dos? Vi ha) g Ttk K.

The shorthand notation
T(V)§(kk' Kw) = (kKILT S| T (w)|K'KI'LT S),

denotes the T(V/)-matrix with momenta k and k’ and orbital
momenta / and /' of the relative motion, and K is the
corresponding momentum of the center-of-mass motion. Further,
L, J, and S are the orbital momentum of the center-of-mass
motion, the total angular momentum and spin, respectively. We
skip for the moment isospin.

The Lippman-Schwinger equation for two-nucleon scattering

For scattering states, the energy is positive, E > 0. The
Lippman-Schwinger equation (a rewrite of the Schroedinger
equation) is an integral equation where we have to deal with the
amplitude R(k, k') (reaction matrix, which is the real part of the
full complex T-matrix) defined through the integral equation for
one partial wave (no coupled-channels)

2_ [ 1

Ri(k, k') = Vi(k, k') + = 2Vi(k, Q) =———s—Ri(q, K').
k) = Vi k) + 2P [ daa?Vi(k.0) g Ri(a. K)
14)

/
For negative energies (bound states) and intermediate states
scattering states blocked by occupied states below the Fermi level.
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The symbol P in the previous slide indicates that Cauchy's
principal-value prescription is used in order to avoid the singularity
arising from the zero of the denominator.

The total kinetic energy of the two incoming particles in the
center-of-mass system is

_K

=

E

Schwinger equation for two-nucleon scattering

The matrix Ry(k, k') relates to the the phase shifts through its
diagonal elements as
tand,

Ri(ko, ko) = — T (15)

From now on we will drop the subscript / in all equations. In order
to solve the Lippman-Schwinger equation in momentum space, we
need first to write a function which sets up the mesh points. We
need to do that since we are going to approximate an integral
through

b N
/ f(x)dx ~ Z wif(xi),
a i=1

where we have fixed N lattice points through the corresponding
weights w; and points x;. Typically obtained via methods like
Gaussian quadrature.
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If you use Gauss-Legendre the points are determined for the interval
X; € [~1,1] You map these points over to the limits in your
integral. You can then use the following mapping
m

ki = const x tan{z(l +x;)} ,
and

wi = const® ——
! 4 cos® (F(1+ xi))
If you choose units fm~1 for k, set const = 1. If you choose to
work with MeV, set const ~ 200 (hc = 197 MeVfm).

The principal value integral is rather tricky to evaluate numerically,
mainly since computers have limited precision. We will here use a
subtraction trick often used when dealing with singular integrals in
numerical calculations. We introduce first the calculus relation

< gk
B

It means that the curve 1/(k — ko) has equal and opposite areas on
both sides of the singular point k. If we break the integral into one
over positive k and one over negative k, a change of variable

k — —k allows us to rewrite the last equation as

gk
=0
/0 2= K2

The Lippman-Schwinger equation for two-nucleon scattering

We can then express a principal values integral as

< f(k)dk [ (f(k) — f(ko))dk
73/0 k2—k§’/0 K2—KE (16)

where the right-hand side is no longer singular at k = ko, it is
proportional to the derivative df /dk, and can be evaluated
numerically as any other integral.
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We can then use this trick to obtain

00 2 N g2 ’
Rk, k') = V(k,k’)+%/0 dq? V(k’q)R(q’(’k‘g)_ q’;")/‘/;k’k")’?(k" )

(17)
This is the equation to solve numerically in order to calculate the
phase shifts. We are interested in obtaining R(ko, ko).

Schwinger equation for two-nucleon scattering

How do we proceed?
Using the mesh points k; and the weights w;, we reach

N 2 /

n_ . 2 5~ wikf VK K)R(k, K) 2
Rk K) = V(K K)+= 30 @—dm x
Jj=1 0 J

K2V (k, ko)R(kp, k')

This equation contains now the unknowns R(k;, k;) (with
dimension N x N) and R(ko, ko).

We can turn it into an equation with dimension (N + 1) x (N + 1)
with a mesh which contains the original mesh points k; for j = 1, N
and the point which corresponds to the energy ko. Consider the
latter as the 'observable’ point. The mesh points become then k;
for j=1,n and kni1 = ko.

With these new mesh points we define the matrix

A,‘J :5;‘1'7 V(k,;kj)uj-, (18)
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where § is the Kronecker § and

2 wik? .
=L BT —1,N
YRR -KRm T
and N
_ kgwj
e 2 G —12)/m

The first task is then to set up the matrix A for a given ko. This is
an (N +1) x (N + 1) matrix. It can be convenient to have an outer
loop which runs over the chosen observable values for the energy
kZ/m. Note that all mesh points k; for j = 1, N must be different
from k. Note also that V/(k;, k;) is an (N + 1) x (N + 1) matrix.
With the matrix A we can rewrite the problem as a matrix problem
of dimension (N +1) x (N + 1). All matrices R, A and V have this
dimension and we get

AiiRij = Vij,

or just

AR =V.

The Lippman-Schwinger equation for two-nucleon scattering

The Lippman-Schwinger equation for two-nucleon scattering

Since you already have defined A and V (these are stored as
(N + 1) x (N + 1) matrices) The final equation involves only the
unknown R. We obtain it by matrix inversion, i.e.,

R=Av. (19)

Thus, to obtain R, you will need to set up the matrices A and V
and invert the matrix A. With the inverse A%, perform a matrix
multiplication with V results in R.

With R you can then evaluate the phase shifts by noting that

tand

R(kn+1, kn+1) = R(ko, ko) = ko

where ¢ are the phase shifts.
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For elastic scattering, the scattering potential can only change the
outgoing spherical wave function up to a phase. In the asymptotic
limit, far away from the scattering potential, we get for the
spherical bessel function

kr — Im/2) 1 <er’(kr—/7r/2) eq(;«q«/z))

. r>1, sin(
k) = kr = 2k

r r

The outgoing wave will change by a phase shift §;, from which we
can define the S-matrix S;(k) = €2¥/(k). Thus, we have

A=) et G =)
r r

The solution to the Schrodinger equation for a spherically
symmetric potential, will have the form
) ik
Pi(r) = e* + F(6)—
=
where f(0) is the scattering amplitude, and related to the
differential cross section as

do

—==|f(0)]?

o =)

Using the expansion of a plane wave in spherical waves, we can
relate the scattering amplitude f(0) with the partial wave phase
shifts d; by identifying the outgoing wave

ikr
Dalr) = e ﬁ;i’(2/+l)(51(k)—1)P,(cos(6’))e’i’”/2 &

r

which can be simplified further by cancelling i’ with e=#7/2
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We have ;
ik e/kr
Unlr) = e+ F(O)

with

£(0) = > (2! + 1)fi(6)Pi(cos(6))

1

where the partial wave scattering amplitude is given by

1(Si(k)-1) _ 1

_ ==& i61(k)
f(6) P oY & Sin di(k)e

With Eulers formula for the cotangent, this can also be written as

1

1
i(6) = kcotd (k) —i
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Interpretation of phase shifts

v Vi
8y< 0 85> 0
- O\seattered

AN : ' § \ ;

Figure: Examples of negative and positive phase shifts for repulsive and
attractive potentials, respectively.

The integrated cross section is given by

=27 " 2 sin
o=2 /0 |£(6)[2 sin 00
2y \@ sin()) 2 /DW(P/(COS(G)))Z sin(6)d0
1

- % S0+ 1)sin? 5,(Kk) = 4r S (21 + DI,
1 1

where the orthogonality of the Legendre polynomials was used to
evaluate the last integral

2

" 2 _
/0 P(cos 0)* sin 0d0 = T

Thus, the total cross section is the sum of the partial-wave cross
sections. Note that the differential cross section contains
cross-terms from different partial waves. The integral over the full

Figure: Examples of scattering lengths.
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At low energy, k — 0, S-waves are most important. In this region
we can define the scattering length a and the effective range r. The
S—wave scattering amplitude is given by

1

1
(o) = kcoto (k) —i°

Taking the limit k — 0, gives us the expansion

1 1

kcotdg = ——+ —r0k2+“A

a 2

Thus the low energy cross section is given by
o = 4na’.

If the system contains a bound state, the scattering length will
become positive (neutron-proton in 35;). For the 1Sy wave, the

scattering length is negative and large. This indicates that the wave
function of the system is at the verge of turning over to get a node,

The Lippman-Schwinger equation for two-nucleon scattering

It is important to realize that the phase shifts themselves are not
observables. The measurable scattering quantity is the cross
section, or the differential cross section. The partial wave phase
shifts can be thought of as a parameterization of the
(experimental) cross sections. The phase shifts provide insights into
the physics of partial wave projected nuclear interactions, and are
thus important quantities to know.

The nucleon-nucleon differential cross section have been measured
at almost all energies up to the pion production threshold (290
MeV in the Lab frame), and this experimental data base is what
provides us with the constraints on our nuclear interaction models.
In order to pin down the unknown coupling constants of the theory,
a statistical optimization with respect to cross sections need to be
carried out. This is how we constrain the nucleon-nucleon
interaction in practice!
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Nijmegen multi-energy pp PWA phase shifts

TABLE IV. pp isovector phase shifts and their multienergy error in degrees as obtained in the multienergy pp analysis.
Errors smaller than 0.0005° are not shown. The lower part lists the phase shifts as obtained in the combined pp + np analysis.

[ D, 16, N Y R P R R P *H,
L ZE e sm m am am am e oe e am e Nijmegen multi-cnergy pp PWA phase shifs
»EE Lm o o4E 4R I o4 m oo oun o Ti bin (eV) N3LO™_NNLO? NLO? AVIE®
. BB S am OB e o 0-100 105 17 45 095
i RN Bed 100190 108 2 100 110
i anoun LS U 190-290 L3 ol L
- 45 M GG B o OO R OH . 0-20 110 20 s 10
WhR i R o R. Machleidt et al., Phys. Rev. C68, 041001(R) (2003)
- d GF 0RO OB W OB OB O - . o E. Epelbaum et al., Eur. Phys. J. AL9, 401 (2004)

o R. B. Wiringa et al., Phys. Rev. C5, 38 (1995)

Figure: Nijmegen phase shifts for selected partial waves.

The pp-data is more accurate than the np-data, and for nn there is
A R ) L 2/ el

T It <
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Proton-neutron 1Sy phase shift

Note that the Nijm93 PWA phase shift becomes negative at
Thab > 250MeV. This indicates that the nucleon-nucleon potential
is repulsive at short distances

An example: chiral twobody interactions

Lot = Lon(frs M) +Lan(fr, Mn, 84, civ di, .. )+Lun (G, G, Diy )4 80— IDAHO-N3L0[500] ——
POUNDERS.N2L0[500
JUELICH-N2L0[450,501
JUELICH-N2L0{600,500]
JUELICH N2L0{550,600)
JUELICH-N210{450.700]
JUELICH-N2L0{600, 70!
93 pW

o R. Machleidt, D. R. Entem, Phys. Rep. 503, 1 (2011)
o E. Epelbaum, H.-W. Hammer, UIf-G. MeiRner, Rev. Mod.
Phys. 81, 1773 (2009)

delta (deg]
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Figure: Proton-neutron 1S, phase shift.
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Differential cross section

pn-DSG: differential cross section @ 199.90 MeV

14 T T T T T T T T % PR . . . . . .
[DAHO-N3LOI00) a) List all allowed according to the Pauli principle partial waves
experment with isospin T, their projection T, spin S, orbital angular

momentum / and total spin J for J < 3. Use the standard
spectroscopic notation 25111 to label different partial waves. A
proton-proton state has Tz = —1, a proton-neutron state has
T, = 0 and a neutron-neutron state has T, = 1.

DSG [mb]

0 P S S
0 20 40 60 80 100 120 140 160 180

cm scattering angle [deg]

Figure: Proton-neutron 1Sy phase shift.




a) Find the closed form expression for the spin-orbit force. Show
that the spin-orbit force LS gives a zero contribution for S-waves
(orbital angular momentum / = 0). What is the value of the
spin-orbit force for spin-singlet states (S = 0)?

b) Find thereafter the expectation value of o - 02, where o; are
so-called Pauli matrices.

c) Add thereafter isospin and find the expectation value of

01 - 0271 - T2, Where 7; are also so-called Pauli matrices. List all the
cases with S=0,1and T =0, 1.

A simple parametrization of the nucleon-nucleon force is given by
what is called the Vg potential model, where we have kept eight
different operators. These operators contain a central force, a
spin-orbit force, a spin-spin force and a tensor force. Several
features of the nuclei can be explained in terms of these four
components. Without the Pauli matrices for isospin the final form
of such an interaction model results in the following form:

V(r) = {cc + Coo1 - 02+ Cr (1 I 2) S12(F)
(mar)

mqr

1 1 — Mol
+Cs <7+72>L-S}e
mar — (mqr) mar

where m,, is the mass of the relevant meson and S5 is the familiar
tensor term. The various coefficients C; are normally fitted so that
the potential reproduces experimental scattering cross sections. By
adding terms which include the isospin Pauli matrices results in an
interaction model with eight operators.

The expectaction value of the tensor operator is non-zero only for
S = 1. We will show this in a forthcoming lecture, after that we

The aim here is to develop a program which solves the
Lippman-Schwinger equation for a simple parametrization for the
1Sy partial wave. This partial wave is given by a central force only
and is parametrized in coordinate space as

bx cx

e e

+ Ve
X X

with x = pr, 1 = 0.7 fm (the inverse of the pion mass),
V, = —10.463 MeV and a =1, V;, = —1650.6 MeV and b = 4 and
V. =6484.3 MeV and c = 7.

oo
V()= Vo~ + Vs

a) Find an analytical expression for the Fourier-Bessel transform
(Hankel transform) to momentum space for / = 0 using

(K Vi[K) = /j,(kr)V(r)j,(k’r)errA

b) Write a small program which calculates the latter expression and

use this potential to compute the T-matrix at positive energies for

| = 0. Compare your results to those obtained with a box potential
given by

Vo r<Ro

vin={ % "=~




