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Why Hartree-Fock?

Hartree-Fock (HF) theory is an algorithm for finding an approximative ex-
pression for the ground state of a given Hamiltonian. The basic ingredients
are

e Define a single-particle basis {4} so that

iLHFwa = ana
with the Hartree-Fock Hamiltonian defined as
iLHF _ tA+ ﬂext + ,aHF

e The term GHF

algorithm.

is a single-particle potential to be determined by the HF

e The HF algorithm means to choose ¥ in order to have
(H) = E"F = (@] H|®o)

that is to find a local minimum with a Slater determinant ®( being the ansatz
for the ground state.

e The variational principle ensures that EHF > Ej, with Ej the exact ground
state energy.
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Why Hartree-Fock?

We will show that the Hartree-Fock Hamiltonian 2 equals our definition of
the operator f discussed in connection with the new definition of the normal-
ordered Hamiltonian (see later lectures), that is we have, for a specific matrix
element . . .

(Pl q) = (p|fla) = (plf + dexcla) + > (pilVgi) as,
i<F

meaning that

(pla™]q) = > (pilV]gi) as-
i<F

The so-called Hartree-Fock potential 4#HF brings an explicit medium dependence
due to the summation over all single-particle states below the Fermi level F. It
brings also in an explicit dependence on the two-body interaction (in nuclear
physics we can also have complicated three- or higher-body forces). The two-
body interaction, with its contribution from the other bystanding fermions,
creates an effective mean field in which a given fermion moves, in addition to the
external potential @eyxt which confines the motion of the fermion. For systems like
nuclei, there is no external confining potential. Nuclei are examples of self-bound
systems, where the binding arises due to the intrinsic nature of the strong force.
For nuclear systems thus, there would be no external one-body potential in the
Hartree-Fock Hamiltonian.

Definitions and notations

Before we proceed we need some definitions. We will assume that the inter-
acting part of the Hamiltonian can be approximated by a two-body interaction.
This means that our Hamiltonian is written as the sum of some onebody part
and a twobody part

A A
ﬁ=ﬁ0+ﬁ122ﬁ0($i)+zﬁ(rij)a (1)
i=1 i<j
with
A

Hy = Zﬁo(mi). (2)

The onebody part ueyt(z;) is normally approximated by a harmonic oscillator
or Woods-Saxon potential or for electronic systems the Coulomb interaction an
electron feels from the nucleus. However, other potentials are fully possible, such
as one derived from the self-consistent solution of the Hartree-Fock equations to
be discussed here.



Definitions and notations

Our Hamiltonian is invariant under the permutation (interchange) of two
particles. Since we deal with fermions however, the total wave function is
antisymmetric. Let P be an operator which interchanges two particles. Due to
the symmetries we have ascribed to our Hamiltonian, this operator commutes
with the total Hamiltonian,

[H,P] =0,
meaning that Uy (z1,xa,...,24) is an eigenfunction of P as well, that is
Pij‘l',\(ml,xg,...,xi,...,xj,...,xA) :B\IIA(xl,xQ,...,xi,...,a:j,...,xA),

where [ is the eigenvalue of P. We have introduced the suffix 17 in order to
indicate that we permute particles ¢ and j. The Pauli principle tells us that the
total wave function for a system of fermions has to be antisymmetric, resulting
in the eigenvalue 5 = —1.

Definitions and notations

In our case we assume that we can approximate the exact eigenfunction with
a Slater determinant

¢a(331) ’(/}a(x2) a(xA)
1| Yslz)  vp(a2) Yp(ra)
<I>(:U1,ac2,...,xA,aﬁ,...,a):j ,
Vol(r1) Yo(z2) ..o ... Yo(za)
(3)
where x; stand for the coordinates and spin values of a particle ¢ and «, 3, ...,

are quantum numbers needed to describe remaining quantum numbers.

Definitions and notations

The single-particle function ¢, (x;) are eigenfunctions of the onebody Hamil-
tonian h;, that is .
ho(zi) = t(x;) + Gext (74),
with eigenvalues

~

ho(xi)a(@i) = (E(25) + lext (1)) Ya(2:) = Eathalzs).

The energies €, are the so-called non-interacting single-particle energies, or
unperturbed energies. The total energy is in this case the sum over all single-
particle energies, if no two-body or more complicated many-body interactions
are present.



Definitions and notations

Let us denote the ground state energy by Ey. According to the variational
principle we have

l%gmﬂz/@ﬁwT

where ® is a trial function which we assume to be normalized

/(P*(I)dT =1,

where we have used the shorthand dr = dx1drs ...dr4.

Brief reminder on some linear algebra properties

Before we proceed with a more compact representation of a Slater determinant,
we would like to repeat some linear algebra properties which will be useful for
our derivations of the energy as function of a Slater determinant, Hartree-Fock
theory and later the nuclear shell model.

The inverse of a matrix is defined by

AN A=
A unitary matrix A is one whose inverse is its adjoint
A7l = AT

A real unitary matrix is called orthogonal and its inverse is equal to its transpose.
A hermitian matrix is its own self-adjoint, that is

A=A
Basic Matrix Features
Matrix Properties Reminder.
Relations Name matrix elements
A=AT symmetric aij = Gj;
A= (AT)fl real orthogonal >, airajr = >, ariar; = 0ij
A= A" real matrix a;j = aj;
A=Al hermitian a;j = aj;
-1 . * *
A= AT) unitary >k Qi = Dok @ik = 0ij




Basic Matrix Features

Since we will deal with Fermions (identical and indistinguishable particles) we
will form an ansatz for a given state in terms of so-called Slater determinants
determined by a chosen basis of single-particle functions.

For a given n x n matrix A we can write its determinant

ai; a2 ... ... Qin
a1 a2 ... ... Q2p
det(A)=|Al=| ... ... ... ... .|,
Anl Qp2 ... ... Qpp

in a more compact form as

n!

|A| = Z(—l)piﬁiauagg « e Anny

i=1

where P is a permutation operator which permutes the column indices 1,2,3,...,n
and the sum runs over all n! permutations. The quantity p; represents the num-
ber of transpositions of column indices that are needed in order to bring a given
permutation back to its initial ordering, in our case given by ajiaos ... ay, here.

Basic Matrix Features, simple 2 x 2 determinant

A simple 2 x 2 determinant illustrates this. We have

ailp a2
az1 Aa22

det(A) = = (—=1)a11a22 + (—1)'aszaz1,

where in the last term we have interchanged the column indices 1 and 2. The
natural ordering we have chosen is aj;as2.

Definitions and notations

With the above we can rewrite our Slater determinant in a more compact
form. In the Hartree-Fock method the trial function is the Slater determinant of
Eq. (3) which can be rewritten as

(I)(xlax% cee 71'14704353 c '71/) = \/%Z(_)Ppwa(xl)wﬁ(xQ) o ‘Q/JV(QUA) = \/EACDH,
P

where we have introduced the antisymmetrization operator A defined by the
summation over all possible permutations of two particles.



Definitions and notations
It is defined as

A= P, (@)

with p standing for the number of permutations. We have introduced for later
use the so-called Hartree-function, defined by the simple product of all possible
single-particle functions

Q1,2 ..., 24,0, 8,...,V) = Yo (z1)Vp(x2) ... Yo (Ta).

Definitions and notations

Both Hy and H; are invariant under all possible permutations of any two
particles and hence commute with A

[Ho, A] = [H;, A] = 0. (5)

Furthermore, A satisfies

A

A2 = A, (6)

since every permutation of the Slater determinant reproduces it.

Definitions and notations
The expectation value of H,
/@*Ffoqm = Al / % AH AD ydr
is readily reduced to
/ d* Hy®dr = Al / O HyAd g dr,

where we have used Egs. (5) and (6). The next step is to replace the anti-
symmetrization operator by its definition and to replace Hy with the sum of
one-body operators

A
/cb*ﬁoq)dT = ZZ(—)P/@’;IBOP@HdT.
=1 p

Definitions and notations

The integral vanishes if two or more particles are permuted in only one of the
Hartree-functions ® 5 because the individual single-particle wave functions are
orthogonal. We obtain then

A
/@*ﬁoqm = Z/@}‘{ﬂochdT.
=1



Orthogonality of the single-particle functions allows us to further simplify the
integral, and we arrive at the following expression for the expectation values of
the sum of one-body Hamiltonians

A A A~
/ O Ho®dr =y / Uk (@) ho, (x)de. (7)

Definitions and notations

We introduce the following shorthand for the above integral

(ulfiols) = / U (@) hoty ()de

and rewrite Eq. (7) as

A

[ s = 3Gl (5)

p=1

Definitions and notations

The expectation value of the two-body part of the Hamiltonian is obtained in
a similar manner. We have

/ O H;ddr = Al / * AH[ A® ydr,

which reduces to
/q> H;®dr = Z Z /(I)H’U ri;) PO pdr,
i<j=1 p

by following the same arguments as for the one-body Hamiltonian.

Definitions and notations

Because of the dependence on the inter-particle distance r;;, permutations of
any two particles no longer vanish, and we get

/q> H;®dr = Z /@HU 7)) (1 — Pyj)®pdr.

1<j=1

where P;; is the permutation operator that interchanges particle ¢ and particle
j. Again we use the assumption that the single-particle wave functions are
orthogonal.



Definitions and notations
We obtain

R 1 A A
/<I>*H1<I>dT =320 [/ U (@) (25)0(rig ) u (@) by () dasdi; (9)

- / ()0 ()0 (rig Yo (s b () dzad; | - (10)

The first term is the so-called direct term. It gives rise to the Hartree term in
Hartree-Fock theory, while the second is due to the Pauli principle and is called
the exchange term and gives rise to the Fock term in the Hartree-Fock equations.
The factor 1/2 is introduced because we now run over all pairs twice.

Definitions and notations

The last equation allows us to introduce some further definitions. The single-
particle wave functions 9, (x), defined by the quantum numbers ;1 and z are
defined as the overlap

Yu(x) = (x|p).

Definitions and notations

We introduce the following shorthands for the above two integrals

(vl = / ()8 ()0 b s by () dezadl
and

(pv|olvp) = /1/)2(%)1#3(%)@(7%]‘)%(J?i)%(ﬂfj)dl‘idwj-

Compact functional

Our functional can then be written in a compact version as

A R 1 A
E[®] = (ulholu) + 3 > Wuvloluv) = (vp|oluw)] .

Properties of the interaction elements

Since the interaction is invariant under the interchange of two particles it
means for example that we have

(pv|o|pv) = (vpldlvp),
or in the more general case

(nv|oloT) = (vuld|To).



Redefining the matrix elements

The direct and exchange matrix elements can be brought together if we define
the antisymmetrized matrix element

(pv|o|pv) as = (pv[d|pv) — (uv|olvp),
or for a general matrix element
(uvldloT)as = (pv|oloT) — (ur|d|To).
It has the symmetry property
(pv[dloT)as = —(uv|dlTo) as = —(vpldloT) s
The antisymmetric matrix element is also hermitian, implying
(pv|dloT)as = (oT|d|p) as-

Rewriting the energy functional

With these notations we rewrite the energy functional as
1A A
/ @ Hyddr = ;;wmmum. (1)

Adding the contribution from the one-body operator Hy to (11) we obtain
the energy functional

A A
0> (uwloluv) as. (12)

p=1lv=1

N =

A
E[®] = (ulhlu) +

In our coordinate space derivations below we will spell out the Hartree-Fock
equations in terms of their integrals.

Reminder on Variational Calculus and Lagrangian Multi-
pliers
The calculus of variations involves problems where the quantity to be minimized

or maximized is an integral.
In the general case we have an integral of the type

b
Blo] = [ 1), 5 )i,

where F is the quantity which is sought minimized or maximized. The problem
is that although f is a function of the variables ®, 9®/0x and z, the exact
dependence of ® on z is not known. This means again that even though the



integral has fixed limits a and b, the path of integration is not known. In our
case the unknown quantities are the single-particle wave functions and we wish
to choose an integration path which makes the functional E[®] stationary. This
means that we want to find minima, or maxima or saddle points. In physics
we search normally for minima. Our task is therefore to find the minimum of
E[®] so that its variation dE is zero subject to specific constraints. In our case
the constraints appear as the integral which expresses the orthogonality of the
single-particle wave functions. The constraints can be treated via the technique
of Lagrangian multipliers

Variational Calculus and Lagrangian Multipliers, simple ex-
ample

Let us specialize to the expectation value of the energy for one particle in
three-dimensions. This expectation value reads

E= /dxdydzw*(%y,z)ﬁw(x,y,Z),
with the constraint
[ dzdydzi @y o2 = 1,

and a Hamiltonian 1
H= 75V2 +Vix,y, 2).

We will, for the sake of notational convenience, skip the variables x, y, z below,
and write for example V(z,y,z) = V.

Manipulating terms

The integral involving the kinetic energy can be written as, with the function
¢ vanishing strongly for large values of z,y, z (given here by the limits a and b),

b b
1 1
/ dxdydzp* (—2v2> Ydrdydz = *V|b + / dxdydz§v¢*vw.
We will drop the limits @ and b in the remaining discussion. Inserting this

expression into the expectation value for the energy and taking the variational
minimum we obtain

SE =3 {/dxdydz (;w*w + Vz/)*w) } = 0.

Adding the Lagrangian multiplier

The constraint appears in integral form as

/ dxdydzy ™ = constant,

10



and multiplying with a Lagrangian multiplier A and taking the variational
minimum we obtain the final variational equation

1
] {/dxdydz <2w*vw + V™ — )@*1/)) } = 0.
We introduce the function f

f = SV VYTY = XY = S+ Uy U + VYT~ A,

where we have skipped the dependence on z,y, z and introduced the shorthand
Yz, ¥y and 1, for the various derivatives.

And with the Euler-Lagrange equations we get
For ¢* the Euler-Lagrange equations yield

of o of 0 of 0 of

oY dx Yy Oy oYy 0z 0 -

which results in 1

We can then identify the Lagrangian multiplier as the energy of the system.
The last equation is nothing but the standard Schroedinger equation and the
variational approach discussed here provides a powerful method for obtaining
approximate solutions of the wave function.

Hartree-Fock by varying the coefficients of a wave function
expansion

In deriving the Hartree-Fock equations, we will expand the single-particle
functions in a known basis and vary the coefficients, that is, the new single-
particle wave function is written as a linear expansion in terms of a fixed chosen
orthogonal basis (for example the well-known harmonic oscillator functions or
the hydrogen-like functions etc). We define our new Hartree-Fock single-particle
basis by performing a unitary transformation on our previous basis (labelled
with greek indices) as

G =" Caga. (13)
)

In this case we vary the coefficients Cp5. If the basis has infinitely many solutions,
we need to truncate the above sum. We assume that the basis ¢, is orthogonal.
A unitary transformation keeps the orthogonality, as discussed in exercise 1
below.

11



More on linear algebra

In the previous slide we stated that a unitary transformation keeps the
orthogonality, as discussed in exercise 1 below. To see this consider first a basis
of vectors v,

Vin
We assume that the basis is orthogonal, that is

T
Vj V; = 6ij-

An orthogonal or unitary transformation
W; = UVi7
preserves the dot product and orthogonality since

T — ,T P — T T . — T P — ..
W W = (Uv,;)" Uv; =v; U Uv; =v; v; = d;;.

Coefficients of a wave function expansion

This means that if the coefficients Cpy belong to a unitary or orthogonal
trasformation (using the Dirac bra-ket notation)

D) = Cpal ),
A

orthogonality is preserved, that is («|8) = b and (p|q) = 0pg.

This propertry is extremely useful when we build up a basis of many-body
Stater determinant based states.

Note also that although a basis |a) contains an infinity of states,
for practical calculations we have always to make some truncations.

More Basic Matrix Features, simple 2 x 2 determinant, use-
ful property of determinants

Before we develop the Hartree-Fock equations, there is another very useful
property of determinants that we will use both in connection with Hartree-Fock
calculations and later shell-model calculations.

Consider the following determinant

bin a2
ba1  aoo

a1biy + aasbia  aia

= 041
o1bar + agbay g

12



More Basic Matrix Features, n x n determinant

We can generalize this to an n X n matrix and have

n
ail ai12 . Zk:l Ckblk oo Q1p ail ai12 . blk e Q1n
n
a1 a2 . Zk:l Ck;bgk o Q2p n a1 a2 . bgk ... Qon
. = E Ck
k=1

n
apl  Ap2 ... Zkzl Ckbuk .. anpn (nl An2 ... bux ... Gpn

This is a property we will use in our Hartree-Fock discussions.

More Basic Matrix Features, a general n x n determinant

We can generalize the previous results, now with all elements a;; being given

as functions of linear combinations of various coefficients ¢ and elements b;;,

Soheibikcrr Do bwkere oo Dop_ibikCri oo Dop_q bikCin
n n n n
Dopeq borncrr D op_qbarcr2 oo D op_ibakcry ... Do g bakCrn
= det(C)det(B),
Zzzl bpkCr1 ZZ:l bnkcka - Zzzl bnkckj S Zzzl bnkCrn

where det(C) and det(B) are the determinants of n X n matrices with elements
cij and b;; respectively. This is a property we will use in our Hartree-Fock
discussions. Convince yourself about the correctness of the above expression by
setting n = 2.

A general Slater determinant

With our definition of the new basis in terms of an orthogonal basis we have
Up() =Y Cpada(a).
A

If the coefficients C}) belong to an orthogonal or unitary matrix, the new basis
is also orthogonal. Our Slater determinant in the new basis ¥, (z) is written as

Up(z1) Yplz2) ... ... Pp(za) YoaCmda(x1) Y3 Cpaga(xa) oo oo D0, Cpaoa(a
1 Pe(x1) Yg(z2) ... .. Yg(za) 1 DA Capoa(z1) Do\ Copda(za) ... ... Y, Coadala

var| N 2

Gi(@1) Gul@a) .o ... Gilza) S Ondn@) 3y Cnda@s) oo .. 3\ Cirdala

which is nothing but det(C)det(®), with det(®) being the determinant given by
the basis functions ¢, (z).

13



Hartree-Fock by varying the coefficients of a wave function
expansion

It is normal to choose a single-particle basis defined as the eigenfunctions of
parts of the full Hamiltonian. The typical situation consists of the solutions of
the one-body part of the Hamiltonian, that is we have

hod = exa.

The single-particle wave functions ¢, (r), defined by the quantum numbers A
and r are defined as the overlap

PA(r) = (r|A).

Hartree-Fock by varying the coefficients of a wave function
expansion

In our discussions hereafter we will use our definitions of single-particle states
above and below the Fermi (F') level given by the labels ijkl--- < F for so-called

single-hole states and abed--- > F for so-called particle states. For general
single-particle states we employ the labels pgrs. ...

Hartree-Fock by varying the coefficients of a wave function
expansion
In Eq. (12), restated here

A

B8] = " (ulhln) +

p=1

l\D\)—l

A A
Z Z pv|olpy) as,

we found the expression for the energy functional in terms of the basis function
ox(r). We then varied the above energy functional with respect to the basis
functions |u). Now we are interested in defining a new basis defined in terms of
a chosen basis as defined in Eq. (13). We can then rewrite the energy functional

as
A

E[®HF) = Z ilh)i) Z(z‘j\@lz’jm (14)
=1 zg:l

CI)HF

where is the new Slater determinant defined by the new basis of Eq. (13).

Hartree-Fock by varying the coefficients of a wave function
expansion

Using Eq. (13) we can rewrite Eq. (14) as

ZZ Ciglalh|B) + Z Y C1.Ci5CHChs(aBlolyd) as.  (15)

i=1 af 1] 1 aByo

14



Hartree-Fock by varying the coefficients of a wave function
expansion

We wish now to minimize the above functional. We introduce again a set
of Lagrange multipliers, noting that since (i|j) = J;; and («|8) = dq. 3, the
coefficients C}, obey the relation

(i]7) —511—2 ,804|5 Z Cia,

which allows us to define a functional to be minimized that reads

F[o!F] = plofF] - Z & ChCia. (16)

i=1 e}

Hartree-Fock by varying the coefficients of a wave function
expansion

Minimizing with respect to C} , remembering that the equations for C}, and

C;o can be written as two independent equations, we obtain

d

dcs, B[2""] - ZEJZ 0,

which yields for every single-particle state ¢ and index « (recalling that the
coefficients Cj, are matrix elements of a unitary (or orthogonal for a real
symmetric matrix) matrix) the following Hartree-Fock equations

ZCZB alh|B) +ZZ *5C5Ciy (aBl070) as = € Ca.

J=1pB~6

Hartree-Fock by varying the coefficients of a wave function
expansion

We can rewrite this equation as (changing dummy variables)

> < (alhlB) +ZZ Cjs(an8]88) as p Cip = elF' Ci.
J

B

Note that the sums over greek indices run over the number of basis set functions
(in principle an infinite number).

15



Hartree-Fock by varying the coefficients of a wave function
expansion

Defining
A
Rl = (olh|B) +> > C5 Cis(a[0]85) as,

Jj=1 ~6

we can rewrite the new equations as

> i Cip = €T Cia (17)
ol

The latter is nothing but a standard eigenvalue problem.

It suffices to tabulate the matrix elements (a|h|3) and (ay|0|50) a5 once and
for all. Successive iterations require thus only a look-up in tables over one-body
and two-body matrix elements. These details will be discussed below when we
solve the Hartree-Fock equations numerically.

Hartree-Fock algorithm
Our Hartree-Fock matrix is thus
A
hig = (alhol) + > Y €5, Cis(an|0]89) as.
Jj=1 ~o

The Hartree-Fock equations are solved in an iterative waym starting with a
guess for the coeflicients C';, = §; , and solving the equations by diagonalization
till the new single-particle energies ¢!'f' do not change anymore by a prefixed
quantity.

Hartree-Fock algorithm

Normally we assume that the single-particle basis |3) forms an eigenbasis for
the operator hg, meaning that the Hartree-Fock matrix becomes

A
Wl = eabap+ Y > Cr Cis(ay|0|B6) as.

Jj=1 6

The Hartree-Fock eigenvalue problem

ZhgﬁFclﬁ = QHFCia,
B

can be written out in a more compact form as

WEC = HEC.

16



Hartree-Fock algorithm

The Hartree-Fock equations are, in their simplest form, solved in an iterative
way, starting with a guess for the coefficients C;,. We label the coefficients as
Cfa , where the subscript n stands for iteration n. To set up the algorithm we
can proceed as follows:

e We start with a guess C’Z.(g) = 0;,o- Alternatively, we could have used
random starting values as long as the vectors are normalized. Another
possibility is to give states below the Fermi level a larger weight.

e The Hartree-Fock matrix simplifies then to (assuming that the coefficients
Ciq are real)

ha/ﬁ‘ - Ca o, + ZZC(O)O(O) C¥7|@|,35>AS

j=1 ~o

Hartree-Fock algorithm

Solving the Hartree Fock eigenvalue problem yields then new eigenvectors
Ci( ) and eigenvalues e FQ,

e With the new elgenvalues we can set up a new Hartree-Fock potential

Z SV (ay]0]88) as

Jj=1 ~o
The diagonalization with the new Hartree-Fock potential yields new eigenvectors
and eigenvalues. This process is continued till for example

>, lel™ — e

m

<A

)

where ) is a user prefixed quantity (A ~ 10~% or smaller) and p runs over all
calculated single-particle energies and m is the number of single-particle states.

Analysis of Hartree-Fock equations and Koopman’s theo-
rem

We can rewrite the ground state energy by adding and subtracting aF (x;)

A A

BT = (ol H|o) = 3 (ilho """ i)+ EZZZMWJ (iglolgi)] = (ila" 10

i<F ’L<Fj<F i<F

which results in
A

A A
EJF = ZEHF LSS Wslolis) — Gtelin] — S Gilat i),
i<k i<E

i<F i<F

l\')

Our single-particle states ijk ... are now single-particle states obtained from the
solution of the Hartree-Fock equations.

17



Analysis of Hartree-Fock equations and Koopman’s theo-
rem

Using our definition of the Hartree-Fock single-particle energies we obtain
then the following expression for the total ground-state energy

A A A
1 Al RN
BiT =% ei—5> > lilolig) — ilolii)].
i<F i<Fj<F

This form will be used in our discussion of Koopman’s theorem.

Analysis of Hartree-Fock equations and Koopman’s theo-
rem

Atomic physics case. We have

H R 1 N
E[@"(N)] = Z(ilholi> t3 Z(ij\@lijM&

where ®MF () is the new Slater determinant defined by the new basis of Eq. (13)
for N electrons (same Z). If we assume that the single-particle wave functions
in the new basis do not change when we remove one electron or add one electron,
we can then define the corresponding energy for the N — 1 systems as

N N
ah o, L Al
E[@M (N —1)] = | Z (i) holi) + 7 Z (15|0|i7) as,
i=1;i#k ij=1;1,j#k

where we have removed a single-particle state k < F', that is a state below the
Fermi level.

Analysis of Hartree-Fock equations and Koopman’s theo-
rem

Calculating the difference

N N

1 1
HF HF
@M ()]~ BB (N-1)] = (holk)+5 > GHlolibhasy S (kilolkias,
i=1;i#k j=1;j#k
we obtain
1 X
E[®"F(N)] = B[@"F (N — 1)) = (klholk) + 5 Y _(kilo[ki)a
j=1

which is just our definition of the Hartree-Fock single-particle energy

B[@"(N)] - E[@"F(N —1)] = "

18



Analysis of Hartree-Fock equations and Koopman’s theo-
rem

Similarly, we can now compute the difference (we label the single-particle

states above the Fermi level as abed > F)
E[®"F(N +1)] — E[®"F (V)] = €F.

These two equations can thus be used to the electron affinity or ionization energies,
respectively. Koopman’s theorem states that for example the ionization energy of
a closed-shell system is given by the energy of the highest occupied single-particle
state. If we assume that changing the number of electrons from N to N + 1 does
not change the Hartree-Fock single-particle energies and eigenfunctions, then
Koopman’s theorem simply states that the ionization energy of an atom is given
by the single-particle energy of the last bound state. In a similar way, we can
also define the electron affinities.

Analysis of Hartree-Fock equations and Koopman’s theo-
rem

As an example, consider a simple model for atomic sodium, Na. Neutral
sodium has eleven electrons, with the weakest bound one being confined the 3s
single-particle quantum numbers. The energy needed to remove an electron from
neutral sodium is rather small, 5.1391 eV, a feature which pertains to all alkali
metals. Having performed a Hartree-Fock calculation for neutral sodium would
then allows us to compute the ionization energy by using the single-particle
energy for the 3s states, namely e}lF.

From these considerations, we see that Hartree-Fock theory allows us to make
a connection between experimental observables (here ionization and affinity
energies) and the underlying interactions between particles. In this sense, we are
now linking the dynamics and structure of a many-body system with the laws of
motion which govern the system. Our approach is a reductionistic one, meaning
that we want to understand the laws of motion in terms of the particles or degrees
of freedom which we believe are the fundamental ones. Our Slater determinant,
being constructed as the product of various single-particle functions, follows this
philosophy.

Analysis of Hartree-Fock equations, Koopman’s theorem

With similar arguments as in atomic physics, we can now use Hartree-Fock
theory to make a link between nuclear forces and separation energies. Changing
to nuclear system, we define

A R 1 A
B[ (A)] = (ilholi) + 5 Y (iilolif) as.

i=1 ij=1
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where ®1F(A) is the new Slater determinant defined by the new basis of Eq. (13)
for A nucleons, where A = N + Z, with N now being the number of neutrons
and Z th enumber of protons. If we assume again that the single-particle wave
functions in the new basis do not change from a nucleus with A nucleons to a
nucleus with A — 1 nucleons, we can then define the corresponding energy for
the A — 1 systems as

A A
E[®"F (A Roli) + = i7]0lij
[ = > (ilholi +3 > (iflolig) as,

i=1;i#k ij=1;i,5#k

where we have removed a single-particle state k < F', that is a state below the
Fermi level.

Analysis of Hartree-Fock equations and Koopman’s theo-
rem

Calculating the difference

A A
1 1
B@™ ()]~ E (A-1)] = (hlholki+5 > (hloliR)asg D (hilolks)as,
i=1;i#k Jj=1;5#k

which becomes

E[®"F(4)] — E[®"F (A - 1)] = (klho|k) +

N[ =

A
> (koK) a
j=1

which is just our definition of the Hartree-Fock single-particle energy

B[@"(A)] - B[@"(A - 1)] = "

Analysis of Hartree-Fock equations and Koopman’s theo-
rem

Similarly, we can now compute the difference (recall that the single-particle
states abed > F)
E[®"F(A+1)] — E[@"F(4)] = €IF.

a

If we then recall that the binding energy differences
BE(A)— BE(A—-1) and BE(A+1)— BE(A),

define the separation energies, we see that the Hartree-Fock single-particle
energies can be used to define separation energies. We have thus our first link
between nuclear forces (included in the potential energy term) and an observable
quantity defined by differences in binding energies.
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Analysis of Hartree-Fock equations and Koopman’s theo-
rem

We have thus the following interpretations (if the single-particle field do not
change)

BE(A) — BE(A —1) = E[®"F(A4)] — E[®"F (A - 1)] = €IF,
and
E(A+1) — BE(A) = E[@"F (A+1)] - E[@"(4)] = ¢;".

If we use 0 as our closed-shell nucleus, we could then interpret the separation
energy
E(*°0) — BE(*0) ~ eop :

and
16 15 HF
E(*°0) — BE("°’N) =~ 601’1/2

Analysis of Hartree-Fock equations and Koopman’s theo-
rem

Similalry, we could interpret
B(770) - BE(*0) ~ e, |
and
BE('"F) — BE(*%0) ~ ew/ .

We can continue like this for all A+ 1 nuclei where A is a good closed-shell (or
subshell closure) nucleus. Examples are 220, 240, 4°Ca, 48Ca, 52Ca, 54Ca, 5Ni,
68Ni, "®Ni, 2°Zr, 88Sr, 1998n, 1328n and 2°8Pb, to mention some possile cases.

Analysis of Hartree-Fock equations and Koopman’s theo-
rem

We can thus make our first interpretation of the separation energies in terms
of the simplest possible many-body theory. If we also recall that the so-called
energy gap for neutrons (or protons) is defined as

AS, =2BE(N,Z)— BE(N —1,Z) — BE(N + 1, 2),
for neutrons and the corresponding gap for protons

AS, =2BE(N,Z) - BE(N,Z —-1)— BE(N,Z + 1),
we can define the neutron and proton energy gaps for 60 as

HF
ASV = GOdu Op1/2

and

AS, = el — HE
& 0dg 0pT 5
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Exercise 1: Hartree-Fock Slater determinant

Consider a Slater determinant built up of orthogonal single-particle orbitals
Uy, with A=1,2,..., A
The unitary transformation

wa = Z OaA¢x\7
A

brings us into the new basis. The new basis has quantum numbers a = 1,2, ..., A.
aragraph!paragraph>paragraph>-0.5em

a) Show that the new basis is orthogonal.
aragraph!paragraph>paragraph>-0.5em

b) Show that the new Slater determinant constructed from the new single-
particle wave functions can be written as the determinant based on the previous
basis and the determinant of the matrix C.

aragraph!paragraph>paragraph>-0.5em

c¢) Show that the old and the new Slater determinants are equal up to a
complex constant with absolute value unity.

Hint. Hint: C is a unitary matrix.

Exercise 2: Matrix elements for the Hartree-Fock method
and the nuclear shell model

We will assume that we can build various Slater determinants using an orthogonal
single-particle basis ¥, with A =1,2,..., A.

The aim of this exercise is to set up specific matrix elements that will turn
useful when we start our discussions of the nuclear shell model. In particular
you will notice, depending on the character of the operator, that many matrix
elements will actually be zero.

Consider three A-particle Slater determinants |®g, |®¢) and |<I>$Jb>, where the
notation means that Slater determinant |®¢) differs from |®g) by one single-
particle state, that is a single-particle state 1, is replaced by a single-particle state
1¥,. It will later be interpreted as a so-called one-particle-one-hole excitation.
Similarly, the Slater determinant |<I>‘ilf> differs by two single-particle states from
|®g) and is normally thought of as a two-particle-two-hole excitation.

Define a general onebody operator F' = Ef‘ f(z;) and a general twobody
operator G= Zi j g(x;,x;) with g being invariant under the interchange of the
coordinates of particles ¢ and j. You can use here the results from the second
exercise set, exercise 3.
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aragraph!paragraph>paragraph>-0.5em

a) Calculate .
(Do |F|Do),

and .
(@] Gl D0).

aragraph!paragraph>paragraph>-0.5em

b) Find thereafter A
(Dol F'|@7),

and .
(@o|G|2F),

aragraph!paragraph>paragraph>-0.5em

¢) Finally, find .
(@o| F|@77),

and .
(®o|G|®S7).

What happens with the two-body operator if we have a transition probability of
the type .
<¢)0|G|(I);ljbl§>a

where the Slater determinant to the right of the operator differs by more than
two single-particle states?
aragraph!paragraph>paragraph>-0.5em

d) With an orthogonal basis of Slater determinants ®y, we can now construct
an exact many-body state as a linear expansion of Slater determinants, that is,
a given exact state

v = f: Cin®.
A=0

In all practical calculations the infinity is replaced by a given truncation in the
sum.

If you are to compute the expectation value of (at most) a two-body Hamil-
tonian for the above exact state

(U H|W,),

based on the calculations above, which are the only elements which will con-
tribute? (there is no need to perform any calculation here, use your results from
exercises a), b), and ¢)).

These results simplify to a large extent shell-model calculations.
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Exercise 3: Developing a Hartree-Fock program

Neutron drops are a powerful theoretical laboratory for testing, validating and
improving nuclear structure models. Indeed, all approaches to nuclear structure,
from ab initio theory to shell model to density functional theory are applicable in
such systems. We will, therefore, use neutron drops as a test system for setting
up a Hartree-Fock code. This program can later be extended to studies of the
binding energy of nuclei like 10 or 4°Ca. The single-particle energies obtained by
solving the Hartree-Fock equations can then be directly related to experimental
separation energies. For those of you interested in such studies, the program you
will end up developing here can be used in later projects, with simple extensions.
Since Hartree-Fock theory is the starting point for several many-body techniques
(density functional theory, random-phase approximation, shell-model etc), the
aim here is to develop a computer program to solve the Hartree-Fock equations
in a given single-particle basis, here the harmonic oscillator.

The Hamiltonian for a system of N neutron drops confined in a harmonic
potential reads

with h2/2m = 20.73 fm?, mc? = 938.90590 MeV, and Vij is the two-body
interaction potential whose matrix elements are precalculated and to be read in
by you.

The Hartree-Fock algorithm can be broken down as follows. We recall that
our Hartree-Fock matrix is

N
hEE = (alholB) + ZZC%CJ‘MO&V\V\&S)A&

j=1 ~é

Normally we assume that the single-particle basis |3) forms an eigenbasis for the
operator hg (this is our case), meaning that the Hartree-Fock matrix becomes

N
Wl = eabap+ Y Y CrCislay|V|B6) as.

j=1 ~¢

The Hartree-Fock eigenvalue problem

Z}AlgFCZg = GEFCZ‘CK,
B

can be written out in a more compact form as
BHEC =
The equations are often rewritten in terms of a so-called density matrix,
which is defined as
N

N
pos = S (1N ils) = 3 O . (18)
=1

i=1
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It means that we can rewrite the Hartree-Fock Hamiltonian as
hET = eada,s + Zp75<a7|V|B(5>AS.

Yo

It is convenient to use the density matrix since we can precalculate in every
iteration the product of two eigenvector components C.

Note that (a|ho|8) denotes the matrix elements of the one-body part of the
starting hamiltonian. For self-bound nuclei <a|fzo |3) is the kinetic energy, whereas
for neutron drops, (a|hg|B) represents the harmonic oscillator hamiltonian since
the system is confined in a harmonic trap. If we are working in a harmonic
oscillator basis with the same w as the trapping potential, then <a|fz0|ﬁ> is
diagonal.

An example of a function written in python (see also the exercises below)
which performs the Hartree-Fock calculation is shown here. In setting up your
code you will need to write a function which sets up the single-particle basis, the
matrix elements t,~ of the one-body operator (called k0 in the function below)
and the antisymmetrized TBMEs (called nninteraction in the code link below)
and the density matrix elements pgs (called densityMatriz below). The python
program shows how one can, in a brute force way read in matrix elements in
m-~scheme and compute the Hartree-Fock single-particle energies for four major
shells. The interaction which has been used is the so-called N3LO interaction
of Machleidt and Entem using the Similarity Renormalization Group approach
method to renormalize the interaction, using an oscillator energy hw = 10 MeV.

The nucleon-nucleon two-body matrix elements are in m-scheme and are
fully anti-symmetrized. The Hartree-Fock programs uses the density matrix
discussed above in order to compute the Hartree-Fock matrix. Here we display
the Hartree-Fock part only, assuming that single-particle data and two-body
matrix elements have already been read in.

We will perform Hartree-Fock calculations for eight, N = 8, neutrons in
an oscillator potentials with an oscillator frequency fw = 10 MeV. This means
that we are filling the 0s and the Op shells and that these single-particle states
define the reference state, or our ansatz for the ground state. The total set of
single-particle states will comprise four major shells only, that is the Os, Op, 1s0d
and 1p0f shells.

The input file spdata.dat contains the information of all single-particle
quantum numbers needed to define this space. In total we have 40 single-particle
states labeled by n, j, [ and m, where m is the projection of the total single-
particle angular momentum j. To every set of single-particle quantum numbers
there is a unique number p identifiying them, meaning that the two-body matrix
elements in the file twobody.dat are identified as (pq|d|rs).

You will need to read these two files and set up arrays which store the matrix
elements while running the program.

aragraph!paragraph>paragraph>-0.5em

a) Set up a Hartree-Fock program which uses first only the Harmonic oscillator
single-particle Hamiltonian for for eight, N = 8, neutrons in an oscillator potential
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https://github.com/NuclearStructure/PHY981/blob/master/doc/ProjectsExercises/projects/2016/Codes/hfnuclei.py
http://journals.aps.org/prc/abstract/10.1103/PhysRevC.68.041001
http://journals.aps.org/prc/abstract/10.1103/PhysRevC.75.061001

with an oscillator energy fiw = 10 MeV. Use the single-particle states defined

in the file spdata.dat. This serves as a useful test of your calculations since the

result should be the harmonic oscillator single-particle energies.
aragraph!paragraph>paragraph>-0.5em

b) hamiltonian is diagonal in ljm (and independent of m), and that the
Hartree-Fock equations can be written as

§ lj i _ ol
hnlngcn;;ﬁ - E'FLZJC’I‘L:;’FL'

n3

where the single-particle Hartree-Fock Hamiltonian matrix elements are

occ

hY e = Onny (201 + 14 3/2)hw + D> (maljnal'§'|Vinslinal'§') o7,

nang l'j’

The occ on the second summation is to remind you that the sum is over I’j’
values of occupied Hartree-Fock states only. This follows from the fact that the
density matrix is diagonal in these quantum numbers. Note well that we need
to do the additional summation over ', 5.
aragraph!paragraph>paragraph>-0.5em

¢) Include thereafter the nucleon-nucleon interaction from the file twobody.dat
and perform Hartree-Fock calculations for neutrons only using the single-particle
states that comprise four major shells only, that is the Os, Op, 1s0d and 1p0f
shells. The occupied single-particle states are those of the Os and Op shells, having
in total eight neutrons. Compute the Hartree-Fock single-particle energies and
compare the final results with the harmonic oscillator energies. Comment your
results.

aragraph!paragraph>paragraph>-0.5em

d) With a working program, add now eight protons and compute the Hartree-
Fock single-particle energies for 160, that is both protons and neutrons. Compare
the proton and neutron single-particle energies for the sgff P and 5525 /o with
their corresponding separation energies. Which separation energies would you
compare them with?

The python program shows how one can, in a brute force way read in matrix
elements in m-scheme and compute the Hartree-Fock single-particle energies
for four major shells. The interaction which has been used is the so-called
N3LO interaction of Machleidt and Entem using the Similarity Renormalization
Group approach method to renormalize the interaction, using an oscillator energy
hw =10 MeV.

The nucleon-nucleon two-body matrix elements are in m-scheme and are
fully anti-symmetrized. The Hartree-Fock programs uses the density matrix
discussed above in order to compute the Hartree-Fock matrix. Here we display
the Hartree-Fock part only, assuming that single-particle data and two-body
matrix elements have already been read in.
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" Star HF-iterations, preparing variables and density matriz """

"t Coefficients for setting up density matriz, assuming only one along the diagonals """
C = np.eye(spOrbitals) # HF coefficients
DensityMatrix = np.zeros([spOrbitals,spOrbitals])
for gamma in range(spOrbitals):
for delta in range(spOrbitals):
sum = 0.0
for i in range(Nparticles):
sum += C[gamma] [i]*C[delta] [i]
DensityMatrix[gamma] [delta] = Decimal (sum)
maxHFiter = 100
epsilon = 1.0e-10
difference = 1.0
hf_count = 0
oldenergies = np.zeros(spOrbitals)
newenergies = np.zeros(spOrbitals)
while hf_count < maxHFiter and difference > epsilon:
print “#####sttatata# ITteration i #####EH#E#AA#E" ), hf_count
HFmatrix = np.zeros([spOrbitals,spOrbitals])
for alpha in range(spOrbitals):
for beta in range(spOrbitals):
- If tests for three-dimensional systems, including isospin conser
if 1[alpha] != 1l[betal] and j[alpha] != j[betal and mj[alphal] != mj[bet
- Setting up the Fock matriz using the density matriz and antisymm
sumFockTerm = 0.0
for gamma in range(spOrbitals):
for delta in range(spOrbitals):
if (mj[alphal+mj[gammal]) != (mj[betal+mj[deltal) and (tz[alph:
sumFockTerm += DensityMatrix[gamma] [delta]*nninteraction[alph:
HFmatrix[alpha] [beta] = Decimal (sumFockTerm)
- Adding the one-body term, here plain harmonic oscillator """
if beta == alpha: HFmatrix[alpha] [alpha] += singleparticleH[alphal]
spenergies, C = np.linalg.eigh(HFmatrix)
mn-Setting up nmew density matrix in m-scheme
DensityMatrix = np.zeros([spOrbitals,spOrbitals])
for gamma in range(spOrbitals):
for delta in range(spOrbitals):
sum = 0.0
for i in range(Nparticles):
sum += C[gamma] [i]*C[delta] [i]
DensityMatrix[gamma] [delta] = Decimal (sum)
newenergies = spenergies
""" Brute force computation of difference between previous and new sp HF energies
sum =0.0
for i in range(spOrbitals):
sum += (abs(newenergies[i]l-oldenergies[i]))/spOrbitals
difference = sum
oldenergies = newenergies
print "Single-particle energies, ordering may have changed "
for i in range(spOrbitals):
print(’{0:4d} {1:.4f}’ .format(i, Decimal(oldenergies[i])))
hf_count += 1

mwmn

Running the program, one finds that the lowest-lying states for a nucleus like
160, we see that the nucleon-nucleon force brings a natural spin-orbit splitting
for the Op states (or other states except the s-states). Since we are using the
m-scheme for our calculations, we observe that there are several states with the

27



same eigenvalues. The number of eigenvalues corresponds to the degeneracy
2j + 1 and is well respected in our calculations, as see from the table here.
The values of the lowest-lying states are (7 for protons and v for neutrons)

Quantum numbers Energy [MeV]

057 5 ~40.4602
05, -40.4602
0sY -40.6426
0Y -40.6426
0p7 -6.7133
0p] 6.7133
Wk s40s
D72 -0.

Op§;2 -11.5886
()pg/2 -11.5886
0p3 ~11.5886
()pg/2 -11.5886
0pY -11.7201
0pt -11.7201
0pY -11.7201
0pt -11.7201
0, 18.7589
0dy 5 18.8082

We can use these results to attempt our first link with experimental data, namely
to compute the shell gap or the separation energies. The shell gap for neutrons
is given by

AS, =2BE(N,Z)— BE(N —1,Z) — BE(N + 1, ).

For 'O we have an experimental value for the shell gap of 11.51 MeV for
neutrons, while our Hartree-Fock calculations result in 25.65 MeV. This means
that correlations beyond a simple Hartree-Fock calculation with a two-body force
play an important role in nuclear physics. The splitting between the OpY /2 and
the Op} /o state is 4.88 MeV, while the experimental value for the gap between the
ground state 1/27 and the first excited 3/27 states is 6.08 MeV. The two-nucleon
spin-orbit force plays a central role here. In our discussion of nuclear forces we
will see how the spin-orbit force comes into play here.
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