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‘ Why Hartree-Fock?

We will show that the Hartree-Fock Hamiltonian AHF equals our
definition of the operator f discussed in connection with the new
definition of the normal-ordered Hamiltonian (see later lectures),
that is we have, for a specific matrix element

(Pl gy = (p|F1q) = (p|E + fexe|q) + D (pil Vlqi) as,
i<F

meaning that
(Pld™]q) = 3" (pil V]qi) as.

i<F

The so-called Hartree-Fock potential 4"F brings an explicit medium
dependence due to the summation over all single-particle states
below the Fermi level F. It brings also in an explicit dependence on
the two-body interaction (in nuclear physics we can also have
complicated three- or higher-body forces). The two-body
interaction, with its contribution from the other bystanding
fermions, creates an effective mean field in which a given fermion

‘ Definitions and notations

Our Hamiltonian is invariant under the permutation (interchange)
of two particles. Since we deal with fermions however, the total
wave function is antisymmetric. Let P be an operator which
interchanges two particles. Due to the symmetries we have ascribed
to our Hamiltonian, this operator commutes with the total
Hamiltonian,

where J is the eigenvalue of P. We have introduced the suffix ij in
order to indicate that we permute particles / and j. The Pauli
principle tells us that the total wave function for a system of
fermions has to be antisymmetric, resulting in the eigenvalue

B=-1

(A, Pl =0,
meaning that Wy(xi, x2, ..., xa) is an eigenfunction of P as well,
that is
P,'j\V)‘(Xth,...,X,',...,Xj,...,XA) = ﬁW)‘(Xth,...,X,',...,Xj,...

xa),

‘ Why Hartree-Fock?

Hartree-Fock (HF) theory is an algorithm for finding an
approximative expression for the ground state of a given
Hamiltonian. The basic ingredients are

o Define a single-particle basis {1,} so that
¥ 4p = catra

with the Hartree-Fock Hamiltonian defined as

™ = 4 O 4

o The term 4"F is a single-particle potential to be determined

by the HF algorithm.
o The HF algorithm means to choose in order to have
(M) = E™F = (| A o)
that is to find a local minimum with a Slater determinant ®q being
the ansatz for the ground state.

ﬁHF

‘ Definitions and notatio

Before we proceed we need some definitions. We will assume that
the interacting part of the Hamiltonian can be approximated by a
two-body interaction. This means that our Hamiltonian is written
as the sum of some onebody part and a twobody part

A A
H=FHo+H=> ho(x)+ Y 0(ry), (1)
i=1 i<j
with .
Ho =" ho(xi). 2
i=1

The onebody part et (X;) is normally approximated by a harmonic
oscillator or Woods-Saxon potential or for electronic systems the
Coulomb interaction an electron feels from the nucleus. However,
other potentials are fully possible, such as one derived from the
self-consistent solution of the Hartree-Fock equations to be
discussed here.

‘ Definitions and notatio

In our case we assume that we can approximate the exact
eigenfunction with a Slater determinant

Ya(x1) ta(x2)

) 1| Ysla) dsle)
N :—!

D(x1,x2,...,X4,0,0,...

Yo(x1) ba(xe)
(©)
where x; stand for the coordinates and spin values of a particle i
and «, 3, ...,7 are quantum numbers needed to describe remaining
quantum numbers.

o (XA
5(xa

(XA




The single-particle function 1), (x;) are eigenfunctions of the
onebody Hamiltonian h;, that is

EO(XV') = £(x;) + Dext (xi),
with eigenvalues
Bo(xi)ta(xi) = (E(7) + ext(x7)) Ya(X;) = €atbal(xi).

The energies &, are the so-called non-interacting single-particle
energies, or unperturbed energies. The total energy is in this case
the sum over all single-particle energies, if no two-body or more
complicated many-body interactions are present.

‘ Brief reminder on some linear algebra properties

Before we proceed with a more compact representation of a Slater
determinant, we would like to repeat some linear algebra properties
which will be useful for our derivations of the energy as function of
a Slater determinant, Hartree-Fock theory and later the nuclear
shell model.

The inverse of a matrix is defined by

Al A=
A unitary matrix A is one whose inverse is its adjoint
Al=Af

A real unitary matrix is called orthogonal and its inverse is equal to
its transpose. A hermitian matrix is its own self-adjoint, that is

A=A

‘ Basic M

Since we will deal with Fermions (identical and indistinguishable
particles) we will form an ansatz for a given state in terms of
so-called Slater determinants determined by a chosen basis of
single-particle functions.

For a given n x n matrix A we can write its determinant

rix Features

a1 a2 ... ... ain

ay a2 ... ... a;x
det(A)=|Al=| ... ... ... ... .|

il EGR coo oos Ehm

in a more compact form as
nl

[Al = (-1 Pianaz ... am,
i=1

where P; is a permutation operator which permutes the column
indicac 1 9 2 H

noand tha cimn viine avne Al nl naveas

Let us denote the ground state energy by Ey. According to the
variational principle we have

Eo < E[¢] = /¢*F/¢dr
where ® is a trial function which we assume to be normalized

/¢*¢dr =1,

where we have used the shorthand d7 = dxidr; ... dra.

‘ Basic Matrix Features

Matrix Properties Reminder

Relations Name matrix elements
A=AT symmetric aj = aji
=i
A= (AT) real orthogonal 37, awaj = Y, akax = 0j
A=A" real matrix aj = aj
A=Af hermitian ajj = aj;
=il B N
A= (A unitary i aka = 3, akak = 0y

‘ Basic Matrix Features, simple 2 x 2 determin

A simple 2 x 2 determinant illustrates this. We have

a1l a2

= (=1)%apa + (—1)'aa
— (—1)"an1ax + (—1)"a2an1,

det(A) =

where in the last term we have interchanged the column indices 1
and 2. The natural ordering we have chosen is aijaz;.




‘ Definitions and notations

With the above we can rewrite our Slater determinant in a more
compact form. In the Hartree-Fock method the trial function is the
Slater determinant of Eq. (3) which can be rewritten as

D(x1,x2,..., x4, 0, 3,...,v) = \/% Z(f)PIS@b(,(xl)wﬁ(xz) o hu(xa)
TP

where we have introduced the antisymmetrization operator A
defined by the summation over all possible permutations of two
particles.

‘ Definitions and notations

Both Ho and A, are invariant under all possible permutations of
any two particles and hence commute with A

[Ho, A] = [H;, A] = 0. (5)

Furthermore, A satisfies

A=A (6)

since every permutation of the Slater determinant reproduces it.

‘ Definitions and notations

The integral vanishes if two or more particles are permuted in only
one of the Hartree-functions ® 4 because the individual
single-particle wave functions are orthogonal. We obtain then

A
/cb*/f/ocbdr = Z/cb’;,im%dr
i=1

Orthogonality of the single-particle functions allows us to further
simplify the integral, and we arrive at the following expression for
the expectation values of the sum of one-body Hamiltonians

A~ 4 ~
/ O*Fpddr =y / 7 (x) ot (x) dx. @)
p=1

‘ Definitions and notations

It is defined as 1
A=12 (-rP @
P
with p standing for the number of permutations. We have
introduced for later use the so-called Hartree-function, defined by

the simple product of all possible single-particle functions

Sp(x1, %,y XA, 0, By, V) = Yo (x1)Ps(%2) - - - Y (xa)-

‘ Definitions and notations

The expectation value of Ho
/¢*F/0¢dr :A!/ 5 AR AdydT
is readily reduced to
/¢*ﬁo¢dr = A!/CDLFIOA&PHdT,
where we have used Eqgs. (5) and (6). The next step is to replace

the antisymmetrization operator by its definition and to replace Hyp
with the sum of one-body operators

A
/¢*I:/0¢dr = ZZ(—)”/%%%W.

i=1 p

‘ Definitions and notations

We introduce the following shorthand for the above integral
(ulboli) = [ 45 :)hors (),

and rewrite Eq. (7) as

A

/ *Fioddr = > (ulholu). ®)

p=1




‘ Definitions and notations

The expectation value of the two-body part of the Hamiltonian is
obtained in a similar manner. We have

/d)*l:I/@dT = A!/o;AF/,MHdT,

which reduces to

. . A R
/¢*H,d>dr: 3 Z(f)ﬂ/ 10(rj) Popdr,

i<j=1 p

by following the same arguments as for the one-body Hamiltonian.

‘ Definitions and notations

We obtain

A A
iy 1 . o
e iodr =33 [ [ itaduis)otvnonts)asia
p=1v=1

9)
= [ 1039310 st
(10)

The first term is the so-called direct term. It gives rise to the
Hartree term in Hartree-Fock theory, while the second is due to the
Pauli principle and is called the exchange term and gives rise to the

Fock term in the Hartree-Fock equations. The factor 1/2 is
introduced because we now run over all pairs twice.

‘ Definitions and notations

We introduce the following shorthands for the above two integrals
(|0 pv) = /L‘“JZ(X«')W;(&')V('ij)wu(xl')dju(ﬁ)dx«'dﬁ-
and

(| 0lvp) = /wﬁ(xr')w;(Xj)\7(fij)wu(><f)%(><j)dxr'd>9~

‘ Definitions and notations

Because of the dependence on the inter-particle distance r;;,
permutations of any two particles no longer vanish, and we get

A
/¢*F/,¢d7 =X / 50(rg) (1 — Py)®pdr.

i<j=1

where Pj; is the permutation operator that interchanges particle
and particle j. Again we use the assumption that the single-particle
wave functions are orthogonal.

‘ Definitions and notations

The last equation allows us to introduce some further definitions.
The single-particle wave functions 1/,,(x), defined by the quantum
numbers p and x are defined as the overlap

Yulx) = (x|p)-

‘ Compact functional

Our functional can then be written in a compact version as

A A
EL6] = Y (ulfols) + S | ol) — (vl ol
I v




‘ Properties of the interaction elements ‘ Redefining the matrix elements

Since the interaction is invariant under the interchange of two
particles it means for example that we have

(uloln) = (vulolvp),
or in the more general case

(uv|¥loT) = (vp|v|7o).

The direct and exchange matrix elements can be brought together
if we define the antisymmetrized matrix element

(0| as = (uv|0|pv) — (po|0lvp),
or for a general matrix element
(uv|0loT)as = (uv|V|oT) — (uv|V|To).
It has the symmetry property
(uv|V|oT)as = —(uv|V|To)as = —(vpu|0|oT) as.
The antisymmetric matrix element is also hermitian, implying

(uv|9]oT) as = (oT[0|p) As-

‘ Rewriting the energy functional ‘

With these notations we rewrite the energy functional as

A

A
. 1 X
/¢*Hl¢dr =23 uwlolmas. (11)
=i

=1
Adding the contribution from the one-body operator Hy to (11) we
obtain the energy functional

A

A A
E[0) = D (ulbli) + 3 30D wlolwias. (12)
p=1v=1

p=1

In our coordinate space derivations below we will spell out the
Hartree-Fock equations in terms of their integrals.

Reminder on Variational Calculus and Lagrangian Multipliers

The calculus of variations involves problems where the quantity to
be minimized or maximized is an integral.
In the general case we have an integral of the type

b P
E[(D]:/a f(d>(x),g,x)dx,

where E is the quantity which is sought minimized or maximized.
The problem is that although f is a function of the variables ®,
0% /dx and x, the exact dependence of ® on x is not known. This
means again that even though the integral has fixed limits a and b,
the path of integration is not known. In our case the unknown
quantities are the single-particle wave functions and we wish to
choose an integration path which makes the functional E[®]
stationary. This means that we want to find minima, or maxima or
saddle points. In physics we search normally for minima. Our task
is therefore to find the minimum of E[®] so that its variation JE is
zero subject to specific constraints. In our case the constraints
appear as the integral which expresses the orthogonalitv of the

Variational Calculus and Lagrangian Multipliers, simple ‘ Manipulating terms

example

Let us specialize to the expectation value of the energy for one
particle in three-dimensions. This expectation value reads

[E = /dxdydzz/)*(x,y,Z)I:Id)(x,y,z),
with the constraint
/dxdydzw*(x,y,z)w(x,y,z) =1,
and a Hamiltonian
A= 7%V2 + V(x,y,z).

We will, for the sake of notational convenience, skip the variables
X, ¥,z below, and write for example V(x,y,z) = V.

The integral involving the kinetic energy can be written as, with the
function 1) vanishing strongly for large values of x, y, z (given here
by the limits a and b),

b b
/ dxdydzip* (—%V2> Ydxdydz = 1 V| b+ / dxdydz%w;*vw

We will drop the limits a and b in the remaining discussion.
Inserting this expression into the expectation value for the energy
and taking the variational minimum we obtain

SE=6 {/ dxdydz (%VU}*V@ + Vz[}*w)} =0.




‘ Adding the Lagrangian multiplier

The constraint appears in integral form as
/ dxdydzi)*1p = constant,

and multiplying with a Lagrangian multiplier A and taking the
variational minimum we obtain the final variational equation

) {/ dxdydz (%vw*vw + Vap*ep — Aw*ﬂ;)} =0.
We introduce the function f
1 1
s EVWVW' Vi -y = E(w:wx+w;wy+w:wz)+ Vi h—Ng*o,

where we have skipped the dependence on x, y, z and introduced
the shorthand ), 1, and ¢, for the various derivatives.

Hartree-Fock by varying the coefficients of a wave function

expansion

In deriving the Hartree-Fock equations, we will expand the
single-particle functions in a known basis and vary the coefficients,
that is, the new single-particle wave function is written as a linear
expansion in terms of a fixed chosen orthogonal basis (for example
the well-known harmonic oscillator functions or the hydrogen-like
functions etc). We define our new Hartree-Fock single-particle basis
by performing a unitary transformation on our previous basis
(labelled with greek indices) as

PP =" Corta. (13)
y

In this case we vary the coefficients C,. If the basis has infinitely
many solutions, we need to truncate the above sum. We assume
that the basis ¢) is orthogonal. A unitary transformation keeps the
orthogonality, as discussed in exercise 1 below.

‘ Coefficients of a wave function expansi

This means that if the coefficients C,y belong to a unitary or
orthogonal trasformation (using the Dirac bra-ket notation)

lp) = D" Cal),
A

orthogonality is preserved, that is (a|3) = dap and (p|q) = 0pq-
This propertry is extremely useful when we build up a basis of
many-body Stater determinant based states.

Note also that although a basis |«) contains an infinity of
states, for practical calculations we have always to make
some truncations.

‘ And with the Euler-Lagrange equations we get

For 1)* the Euler-Lagrange equations yield
of o of o of d of

o0 Oxour  Oyou;  0zovy

which results in
i
fi(wxx + 1y +Pzz) + Vi = M.

We can then identify the Lagrangian multiplier as the energy of the
system. The last equation is nothing but the standard Schroedinger
equation and the variational approach discussed here provides a
powerful method for obtaining approximate solutions of the wave
function.

‘ More on linear algebra

In the previous slide we stated that a unitary transformation keeps
the orthogonality, as discussed in exercise 1 below. To see this
consider first a basis of vectors v;,

An orthogonal or unitary transformation
w; = Uv;,

preserves the dot product and orthogonality since

wlw: = (Uv)TUv; = vIUTUv; = vlvi = .

More Basic Matrix Features, simple 2 x 2 determinant,

useful property of determinants

Before we develop the Hartree-Fock equations, there is another very
useful property of determinants that we will use both in connection
with Hartree-Fock calculations and later shell-model calculations.
Consider the following determinant

. b2 a2
by az

arbi + aasbiz a2
aiboy +aobn a2

_ b1 a2
=«
bo1 ax




‘ More Basic M

rix Features, n X n determinant ‘ More Basic Matrix Features, a general n x n determinant

We can generalize the previous results, now with all elements a;;
being given as functions of linear combinations of various
We can generalize this to an n x n matrix and have coefficients ¢ and elements by,
a1 a2 ... YopqCkbik ... ain a1 a2 ... | bue Shoibikcka YopoibikCke oo g bikCki .. Dop_1 bikCkn
a1 a2 ... g Ckbk ... am n a1 am ... | b Shei bk Yooy bakCke oo Dopq bokCi oo Dop—q bokChn
an a2 .- Y1 Ckbnk - am anm am .- | bnk ke bkt Yp_q bakCka oo Yp_g bakChi - Doy bakChn
This is a property we will use in our Hartree-Fock discussions. where det(C) and det(B) are the determinants of n x n matrices
with elements c;; and bj; respectively. This is a property we will use
in our Hartree-Fock discussions. Convince yourself about the
correctness of the above expression by setting n = 2.

‘ A general Slater determinant Hartree-Fock by varying the coefficients of a wave function

expansion
With our definition of the new basis in terms of an orthogonal basis
we have
Pp(x) =Y Coacda()-
Iy It is normal to choose a single-particle basis defined as the

If the coefficients Cp belong to an orthogonal or unitary matrix, e.igen’r'.unctions. of parts of the.full Hamiltonian. The typical
the new basis is also orthogonal. Our Slater determinant in the new situation consists of the solutions of the one-body part of the
basis 1), (x) is written as Hamiltonian, that is we have

Up(x) Gpl) o oo Up(xa) PINSENCI DY i = e

1 Ya(x1) W) Valxa) 1 Lalanrla) X The single-particle wave functions ¢,(r), defined by the quantum

VAT oo A numbers A and r are defined as the overlap

Wr(xl) 'Lbr(Xz) wz(XA) ZA CtA¢)\(X1 Z ¢)\(r) — <r‘)\>'
which is nothing but det(C)det(®), with det(®) being the
determinant given by the basis functions ¢, (x).

Hartree-Fock by varying the coefficients of a wave function Hartree-Fock by varying the coefficients of a wave function

expansion expansion
In Eq. (12), restated here

A A A

E0] = D (ulbli) + 5 30 D ol as,
n=1 p=1v=1

In our discussions hereafter we will use our definitions of

single-particle states above and below the Fermi (F) level given by

the labels ijk/ - - - < F for so-called single-hole states and

abed - -- > F for so-called particle states. For general single-particle

states we employ the labels pgrs . ...

we found the expression for the energy functional in terms of the
basis function ¢(r). We then varied the above energy functional
with respect to the basis functions |1). Now we are interested in
defining a new basis defined in terms of a chosen basis as defined in
Eq. (13). We can then rewrite the energy functional as

A

A
E[OHF] = 3 (i1l + 3 S (il9li as, (14)

i=1 ij=1

where ®HF
of Eq. (13).

is the new Slater determinant defined by the new basis




Hartree-Fock by varying the coefficients of a wave function

Hartree-Fock by varying the coefficients of a wave function

expansion

Using Eq. (13) we can rewrite Eq. (14) as

E[v] = ZZ Ciga]h|B)+ ZZ . Gis Ciy Gis (B 0170) 4
i=1 af ij=1apyé (15)

Hartree-Fock by varying the coefficients of a wave function

expansion

expansion

We wish now to minimize the above functional. We introduce again
a set of Lagrange multipliers, noting that since (i|j) = d;; and
(a|B) = 04,3, the coefficients C;, obey the relation

(ilj) = 6:j =Y, G CiplalB) = Z o Cicvs
af

which allows us to define a functional to be minimized that reads

F[o"7] = E[oF] - Z(, Z (16)

Hartree-Fock by varying the coefficients of a wave function
expansion

Minimizing with respect to Cjf,, remembering that the equations for
C}, and Cj, can be written as two independent equations, we

obtain

d o
= |E™1=3 6> GiGa| =0,
i ; o

which yields for every single-particle state / and index o (recalling
that the coefficients Cj, are matrix elements of a unitary (or
orthogonal for a real symmetric matrix) matrix) the following
Hartree-Fock equations

Z Cila|h|B) +ZZ Cis Cin (Bl 0|70) as = €l Cig.

J=1 B8

Hartree-Fock by varying the coefficients of a wave function

expansion

Defining

htE = a\h\ﬂ>+22 Gis(01]7185) as

=

we can rewrite the new equations as
Ehg{f Cig = e G (17)

The latter is nothing but a standard eigenvalue problem.

It suffices to tabulate the matrix elements (a|h|3) and
(ay|7|B6) as once and for all. Successive iterations require thus
only a look-up in tables over one-body and two-body matrix
elements. These details will be discussed below when we solve the
Hartree-Fock equations numerically.

We can rewrite this equation as (changing dummy variables)
>4 (alhlB) + Z Z Gis(an|71B) as ¢ Cig = el o
B i

Note that the sums over greek indices run over the number of basis
set functions (in principle an infinite number).

‘ Hartree-Fock algorithm

Our Hartree-Fock matrix is thus

RHE = (o] ho| B) +ZZ Cis(ay|9|85) as

j=1 ~6

The Hartree-Fock equations are solved in an iterative waym starting
with a guess for the coefficients Cj, = ., and solving the
equations by diagonalization till the new single-particle energies /I
do not change anymore by a prefixed quantity.




‘ Hartree-Fock algorithm ‘ Hartree-Fock algorithm

Normally we assume that the single-particle basis |3) forms an The Hartree-Fock equations are, in their simplest form, solved in an
eigenbasis for the operator fy, meaning that the Hartree-Fock iterative way, starting with a guess for the coefficients Ci,. We
matrix becomes label the coefficients as C,(;'), where the subscript n stands for
iteration n. To set up the algorithm we can proceed as follows:
had = €abap + ZZ Gis{an[V|B80) as o We start with a guess Ci({?) = djo. Alternatively, we could
J=1 8 have used random starting values as long as the vectors are

normalized. Another possibility is to give states below the
Fermi level a larger weight.

Z EfgC,-@ = E?FC,-Q, o The Hartree-Fock matrix simplifies then to (assuming that the
coefficients Cj, are real)

The Hartree-Fock eigenvalue problem

can be written out in a more compact form as N
P RHE = adap + ZZ 9P ar|0188) as
IA_’HF(:- — fHF C. Jj=1 ~6

Hartree-Fock algorithm Analysis of Hartree-Fock equations and Koopman's theorem

Solving the Hartree-Fock eigenvalue problem yields then new
eigenvectors C,‘;) and eigenvalues e,HF(l) We can rewrite the ground state energy by adding and subtracting
o With the new eigenvalues we can set up a new Hartree-Fock aMF(x;)
potential a a
E§F = (| H| o) = ho+aM" il o1i)]—
ZZ O (09188} as. 0" = (@0l Al®o) = 3 (ilho+a™" Lj)+5 ZZ[(UMU (il oLl |
i<F :<FJ§F i<
Jj=1 ~6
The diagonalization with the new Hartree-Fock potential yields new which results in
eigenvectors and eigenvalues. This process is continued till for A LA A A
example HF _ HE 4 — ilo]if) — (ij|o]ji)] — oHF
o EYF =D e+ 5 0 S LG19ld) - Gilobil] - (10" i)
Yola —e i<F i<F j<F i<F
= <,
. . . 2 Our single-particle states jjk ... are now single-particle states
where \ is a user prefixed quantity (A ~ 10~° or smaller) and p obtained from the solution of the Hartree-Fock equations.
runs over all calculated single-particle energies and m is the number
of single-particle states.

Analysis of Hartree-Fock equations and Koopman's theorem ‘ Analysis of Hartree-Fock equations and Koopman's theorem

We have
H 1 N
Using our definition of the Hartree-Fock single-particle energies we E[®"F(N)] = Z ilholi) 5 Z iilolij) as
obtain then the following expression for the total ground-state =1 j=1
ener )
&y where ®HF(N) is the new Slater determinant defined by the new
A 1A basis of Eq. (13) for N electrons (same Z). If we assume that the
= 25,- 5 ZZ [0y — (il oL - single-particle wave functions in the new basis do not change when
i<F i<F j<F we remove one electron or add one electron, we can then define the

. . . . . , corresponding energy for the N — 1 systems as
This form will be used in our discussion of Koopman's theorem.

N N
R o D "
EOTN-DI= Y Gl 5 Y (ilelias
i=1;i#k =i j#k

where we have removed a single-particle state k < F, that is a
state below the Fermi level.




Analysis of Hartree-Fock equations and Koopman's theorem

Calculating the difference

N N
1 o 1 .
E[O1T(N)]—E[®"F (N=1)] = (klholk)+5 > (iklolik)as > | (kil)
i=1;i#k J=Lij#k

we obtain
1 N
E[OTT(N)] - E[®"F(N — 1)] = (k| oK) + 52 kj19/kj) as

which is just our definition of the Hartree-Fock single-particle
energy
E[®"F(N)] — E[@"" (N - 1)] = &

Analysis of Hartree-Fock equations and Koopman's theorem

As an example, consider a simple model for atomic sodium, Na.
Neutral sodium has eleven electrons, with the weakest bound one
being confined the 3s single-particle quantum numbers. The energy
needed to remove an electron from neutral sodium is rather small,
5.1391 eV, a feature which pertains to all alkali metals. Having
performed a Hartree-Fock calculation for neutral sodium would
then allows us to compute the ionization energy by using the
single-particle energy for the 3s states, namely e}".

From these considerations, we see that Hartree-Fock theory allows
us to make a connection between experimental observables (here
ionization and affinity energies) and the underlying interactions
between particles. In this sense, we are now linking the dynamics
and structure of a many-body system with the laws of motion
which govern the system. Our approach is a reductionistic one,
meaning that we want to understand the laws of motion in terms of
the particles or degrees of freedom which we believe are the
fundamental ones. Our Slater determinant, being constructed as
the product of various single-particle functions, follows this

Analysis of Hartree-Fock equations and Koopman's theorem

Calculating the difference

A A

1 1 oA

E[@TF(A)-E[®"F (A-1)] = (Klfolk)+5 > (ikloliklass D |(kil
i=Li#k j:1;1¢

which becomes
1A
HF HF
E[®""(A)] — E[®"(A — 1)] = (k|o| k) + > 271 kjl7|Kj)a

which is just our definition of the Hartree-Fock single-particle
energy
E[®"F(A)] - E[6"F(A - 1)] = 6

Analysis of Hartree-Fock equations and Koopman's theorem

Similarly, we can now compute the difference (we label the
single-particle states above the Fermi level as abcd > F)

E[®"F(N +1)] — E[o"F(N)] = 7

These two equations can thus be used to the electron affinity or
ionization energies, respectively. Koopman's theorem states that for
example the ionization energy of a closed-shell system is given by
the energy of the highest occupied single-particle state. If we
assume that changing the number of electrons from N to N + 1
does not change the Hartree-Fock single-particle energies and
eigenfunctions, then Koopman's theorem simply states that the
ionization energy of an atom is given by the single-particle energy
of the last bound state. In a similar way, we can also define the
electron affinities.
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With similar arguments as in atomic physics, we can now use
Hartree-Fock theory to make a link between nuclear forces and
separation energies. Changing to nuclear system, we define

A

E[®™(A)] = (ilholi) 22 il ?]ij) as,
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where ®HF(A) is the new Slater determinant defined by the new
basis of Eq. (13) for A nucleons, where A= N + Z, with N now
being the number of neutrons and Z th enumber of protons. If we
assume again that the single-particle wave functions in the new
basis do not change from a nucleus with A nucleons to a nucleus
with A — 1 nucleons, we can then define the corresponding energy
for the A — 1 systems as

A
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Similarly, we can now compute the difference (recall that the
single-particle states abcd > F)

E[®HF(A +1)] — E[oFF(A4)] = P
If we then recall that the binding energy differences
BE(A)— BE(A—1) and BE(A+1)— BE(A),

define the separation energies, we see that the Hartree-Fock
single-particle energies can be used to define separation energies.
We have thus our first link between nuclear forces (included in the
potential energy term) and an observable quantity defined by
differences in binding energies.
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We have thus the following interpretations (if the single-particle
field do not change)

BE(A) — BE(A — 1) ~ E[¢'TF(A)] — E[¢MF(A —1)] = €I
and
BE(A +1) — BE(A) ~ E[®"F(A + 1)] - E[®""(A)] = &,

If we use 90 as our closed-shell nucleus, we could then interpret
the separation energy
BE(*°0) — BE(**0) ~ ety .,/ ,

and

BE(*%0) — BE(**N) ~

~ 50"1/2

Analysis of H e-Fock equations a

Similalry, we could interpret

BE(*"0) — BE(**0) ~ eng, ,
and

BE(*F) — BE(*°0) ~ ew .

We can continue like this for all A=+ 1 nuclei where A is a good
closed-shell (or subshell closure) nucleus. Examples are 220, 240,
40Ca, 48Ca, 52Ca, 54Ca, 5N, 6BNi, 78N, 907y, 88Sy, 1005, 132G,
and 2%8Pb, to mention some possile cases.
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We can thus make our first interpretation of the separation energies
in terms of the simplest possible many-body theory. If we also recall
that the so-called energy gap for neutrons (or protons) is defined as

AS, =2BE(N,Z)— BE(N —1,Z) — BE(N + 1, Z),
for neutrons and the corresponding gap for protons

AS, =2BE(N,Z) — BE(N,Z —1) — BE(N,Z +1),
we can define the neutron and proton energy gaps for 160 as

AS, = i HE

€
'5/2 0p)2?
and
AS; = el T .
T 0d5/2 0p1/2

Consider a Slater determinant built up of orthogonal single-particle
orbitals ¢y, with A =1,2,... A.
The unitary transformation

Ya= Cardn,
X

brings us into the new basis. The new basis has quantum numbers
a=12... A

a) Show that the new basis is orthogonal.

b) Show that the new Slater determinant constructed from the new
single-particle wave functions can be written as the determinant
based on the previous basis and the determinant of the matrix C.
c) Show that the old and the new Slater determinants are equal up
to a complex constant with absolute value unity.

Hint. Hint: C is a unitary matrix.

We will assume that we can build various Slater determinants using
an orthogonal single-particle basis 1y, with A =1,2,..., A

The aim of this exercise is to set up specific matrix elements that
will turn useful when we start our discussions of the nuclear shell
model. In particular you will notice, depending on the character of
the operator, that many matrix elements will actually be zero.

Consider three A-particle Slater determinants 2) and \¢fjb>,
where the notation means that Slater determinant [®?) differs from
|®o) by one single-particle state, that is a single-particle state 1); is
replaced by a single-particle state 1,. It will later be interpreted as
a so-called one-particle-one-hole excitation. Similarly, the Slater
determinant \k‘bl ) differs by two single-particle states from |®q)
and is normally thought of as a two-particle-two-hole excitation.

Define a general onebody operator F= ZA f(x;) and a general
twobody operator G = Z,>, &(xi,x;) with g being invariant under
the interchange of the coordinates of particles i and j. You can use
here the results from the second exercise set, exercise 3.

a) Calculate

Neutron drops are a powerful theoretical Taboratory for testing,
validating and improving nuclear structure models. Indeed, all
approaches to nuclear structure, from ab initio theory to shell
model to density functional theory are applicable in such systems.
We will, therefore, use neutron drops as a test system for setting up
a Hartree-Fock code. This program can later be extended to
studies of the binding energy of nuclei like °0 or #°Ca. The
single-particle energies obtained by solving the Hartree-Fock
equations can then be directly related to experimental separation
energies. For those of you interested in such studies, the program
you will end up developing here can be used in later projects, with
simple extensions. Since Hartree-Fock theory is the starting point
for several many-body techniques (density functional theory,
random-phase approximation, shell-model etc), the aim here is to
develop a computer program to solve the Hartree-Fock equations in
a given single-particle basis, here the harmonic oscillator.

The Hamiltonian for a system of N neutron drops confined in a
harmonic potential reads

Nogo Ny
GNP N 2 N




