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Studies of infinite matter

Studies of infinite nuclear matter play an important role in nuclear
physics. The aim of this part of the lectures is to provide the
necessary ingredients for perfoming studies of neutron star matter
(or matter in β-equilibrium) and symmetric nuclear matter. We
start however with the electron gas in two and three dimensions for
both historical and pedagogical reasons. Since there are several
benchmark calculations for the electron gas, this small detour will
allow us to establish the necessary formalism. Thereafter we will
study infinite nuclear matter

at the Hartree-Fock with realistic nuclear forces and
using many-body methods like coupled-cluster theory or
in-medium SRG as discussed in our previous sections.

The infinite electron gas

The electron gas is perhaps the only realistic model of a system of
many interacting particles that allows for a solution of the
Hartree-Fock equations on a closed form. Furthermore, to first
order in the interaction, one can also compute on a closed form the
total energy and several other properties of a many-particle
systems. The model gives a very good approximation to the
properties of valence electrons in metals. The assumptions are

System of electrons that is not influenced by external forces
except by an attraction provided by a uniform background of
ions. These ions give rise to a uniform background charge.
The ions are stationary.
The system as a whole is neutral.
We assume we have Ne electrons in a cubic box of length L
and volume Ω = L3. This volume contains also a uniform
distribution of positive charge with density Nee/Ω.

The electron gas

The homogeneous electron gas is one of the few examples of a
system of many interacting particles that allows for a solution of
the mean-field Hartree-Fock equations on a closed form. To first
order in the electron-electron interaction, this applies to ground
state properties like the energy and its pertinent equation of state
as well. The homogeneus electron gas is a system of electrons that
is not influenced by external forces except by an attraction provided
by a uniform background of ions. These ions give rise to a uniform
background charge. The ions are stationary and the system as a
whole is neutral. Irrespective of this simplicity, this system, in both
two and three-dimensions, has eluded a proper description of
correlations in terms of various first principle methods, except
perhaps for quantum Monte Carlo methods. In particular, the
diffusion Monte Carlo calculations of Ceperley and Ceperley and
Tanatar are presently still considered as the best possible
benchmarks for the two- and three-dimensional electron gas.

The electron gas

The electron gas, in two or three dimensions is thus interesting as a
test-bed for electron-electron correlations. The three-dimensional
electron gas is particularly important as a cornerstone of the
local-density approximation in density-functional theory. In the
physical world, systems similar to the three-dimensional electron
gas can be found in, for example, alkali metals and doped
semiconductors. Two-dimensional electron fluids are observed on
metal and liquid-helium surfaces, as well as at
metal-oxide-semiconductor interfaces. However, the Coulomb
interaction has an infinite range, and therefore long-range
correlations play an essential role in the electron gas.

The electron gas

At low densities, the electrons become localized and form a lattice.
This so-called Wigner crystallization is a direct consequence of the
long-ranged repulsive interaction. At higher densities, the electron
gas is better described as a liquid. When using, for example, Monte
Carlo methods the electron gas must be approximated by a finite
system. The long-range Coulomb interaction in the electron gas
causes additional finite-size effects that are not present in other
infinite systems like nuclear matter or neutron star matter. This
poses additional challenges to many-body methods when applied to
the electron gas.



The infinite electron gas as a homogenous system

This is a homogeneous system and the one-particle wave functions
are given by plane wave functions normalized to a volume Ω for a
box with length L (the limit L→∞ is to be taken after we have
computed various expectation values)

ψkσ(r) =
1√
Ω

exp (ikr)ξσ

where k is the wave number and ξσ is a spin function for either spin
up or down

ξσ=+1/2 =

(
1
0

)
ξσ=−1/2 =

(
0
1

)
.

Periodic boundary conditions

We assume that we have periodic boundary conditions which limit
the allowed wave numbers to

ki =
2πni
L

i = x , y , z ni = 0,±1,±2, . . .

We assume first that the electrons interact via a central, symmetric
and translationally invariant interaction V (r12) with r12 = |r1 − r2|.
The interaction is spin independent.
The total Hamiltonian consists then of kinetic and potential energy

Ĥ = T̂ + V̂ .

The operator for the kinetic energy can be written as

T̂ =
∑

kσ

~2k2

2m
a†kσakσ.

Defining the Hamiltonian operator
The Hamiltonian operator is given by

Ĥ = Ĥel + Ĥb + Ĥel−b,

with the electronic part

Ĥel =
N∑

i=1

p2
i

2m
+

e2

2

∑

i 6=j

e−µ|ri−rj |

|ri − rj |
,

where we have introduced an explicit convergence factor (the limit
µ→ 0 is performed after having calculated the various integrals).
Correspondingly, we have

Ĥb =
e2

2

∫ ∫
drdr′

n(r)n(r′)e−µ|r−r′|

|r − r′| ,

which is the energy contribution from the positive background
charge with density n(r) = N/Ω. Finally,

Ĥel−b = −e2

2

N∑

i=1

∫
dr

n(r)e−µ|r−xi |

|r − xi |
,

is the interaction between the electrons and the positive
background.

Single-particle Hartree-Fock energy

In the first exercise below we show that the Hartree-Fock energy
can be written as

εHFk =
~2k2

2me
− e2

Ω2

∑

k ′≤kF

∫
dre i(k

′−k)r
∫

dr′
e i(k−k′)r′

|r − r′|

resulting in

εHF
k =

~2k2

2me
− e2kF

2π

[
2 +

k2
F − k2

kkF
ln

∣∣∣∣
k + kF
k − kF

∣∣∣∣
]

Single-particle Hartree-Fock energy in a more compact form

The previous result can be rewritten in terms of the density

n =
k3
F

3π2 =
3

4πr3
s

,

where n = Ne/Ω, Ne being the number of electrons, and rs is the
radius of a sphere which represents the volum per conducting
electron. It can be convenient to use the Bohr radius
a0 = ~2/e2me . For most metals we have a relation rs/a0 ∼ 2− 6.
The quantity rs is dimensionless.

Total Hartree-Fock energy

In the second exercise below we find that the total energy
E0/Ne = 〈Φ0|Ĥ|Φ0〉/Ne for for this system to first order in the
interaction is given as

E0/Ne =
e2

2a0

[
2.21
r2
s

− 0.916
rs

]
.



Exercises: Hartree-Fock single-particle solution for the
electron gas

Exercise 1
The electron gas model allows closed form solutions for quantities
like the single-particle Hartree-Fock energy. The latter quantity is
given by the following expression

εHF
k =

~2k2

2m
− e2

V 2

∑

k ′≤kF

∫
dre i(k

′−k)r
∫

dr′
e i(k−k′)r′

|r − r′|

Show first that

εHFk =
~2k2

2m
− e2kF

2π

[
2 +

k2
F − k2

kkF
ln

∣∣∣∣
k + kF
k − kF

∣∣∣∣
]

(Hint: Introduce the convergence factor e−µ|r−r′| in the potential
and use

∑
k → V

(2π)3
∫
dk )

Rewrite the above result as a function of the density

n =
k3
F

3π2 =
3

4πr3
s

,

where n = N/V , N being the number of particles, and rs is the
radius of a sphere which represents the volum per conducting
electron.

Exercises: Hartree-Fock single-particle solution for the
electron gas

Exercise 1

It can be convenient to use the Bohr radius a0 = ~2/e2m. For
most metals we have a relation rs/a0 ∼ 2− 6.
Make a plot of the free electron energy and the Hartree-Fock
energy and discuss the behavior around the Fermi surface. Extract
also the Hartree-Fock band width ∆εHF defined as

∆εHF = εHFkF − ε
HF
0 .

Compare this results with the corresponding one for a free electron
and comment your results. How large is the contribution due to the
exchange term in the Hartree-Fock equation?

Exercises: Hartree-Fock single-particle solution for the
electron gas

Exercise 1
We will now define a quantity called the effective mass. For |k|
near kF , we can Taylor expand the Hartree-Fock energy as

εHFk = εHF
kF

+

(
∂εHFk
∂k

)

kF

(k − kF ) + . . .

If we compare the latter with the corresponding expressiyon for the
non-interacting system

ε
(0)
k =

~2k2
F

2m
+

~2kF
m

(k − kF ) + . . . ,

we can define the so-called effective Hartree-Fock mass as

m∗HF ≡ ~2kF

(
∂εHFk
∂k

)−1

kF

Compute m∗HF and comment your results.

Exercises: Hartree-Fock single-particle solution for the
electron gas

Exercise 1
Show that the level density (the number of single-electron states
per unit energy) can be written as

n(ε) =
Vk2

2π2

(
∂ε

∂k

)−1

Calculate n(εHF
F ) and comment the results.

Hartree-Fock ground state energy for the electron gas in
three dimensions

Partial solution to exercise 1
We want to show that, given the Hartree-Fock equation for the
electron gas

εHFk =
~2k2

2m
− e2

V 2

∑

p≤kF

∫
dr exp (i(p− k)r)

∫
dr′

exp (i(k− p)r′)
|r − r′|

the single-particle energy can be written as

εHF
k =

~2k2

2m
− e2kF

2π

[
2 +

k2
F − k2

kkF
ln

∣∣∣∣
k + kF
k − kF

∣∣∣∣
]
.

Hartree-Fock ground state energy for the electron gas in
three dimensions

We introduce the convergence factor e−µ|r−r′| in the potential and
use

∑
k → V

(2π)3
∫
dk. We can then rewrite the integral as

e2

V 2

∑

k ′≤kF

∫
dr exp (i(k′ − k)r)

∫
dr′

exp (i(k− p)r′)
|r − r′| =

(1)

e2

V (2π)3

∫
dr
∫

dr′

|r − r′| exp (−ik(r − r′))

∫
dp exp (ip(r − r′)),

(2)

and introducing the abovementioned convergence factor we have

lim
µ→0

e2

V (2π)3

∫
dr
∫

dr′
exp (−µ|r − r′|)
|r − r′|

∫
dp exp (i(p− k)(r − r′)).

(3)



Hartree-Fock ground state energy for the electron gas in
three dimensions

With a change variables to x = r− r′ and y = r′ we rewrite the last
integral as

lim
µ→0

e2

V (2π)3

∫
dp
∫

dy
∫

dx exp (i(p− k)x)
exp (−µ|x|)
|x| .

The integration over x can be performed using spherical
coordinates, resulting in (with x = |x|)
∫

dx exp (i(p− k)x)
exp (−µ|x|)
|x| =

∫
x2dxdφd cos (θ) exp (i(p− k)x cos (θ))

exp (−µx)

x
.

Hartree-Fock ground state energy for the electron gas in
three dimensions

We obtain

4π
∫

dx
sin (|p− k|)x
|p− k| exp (−µx) =

4π
µ2 + |p− k|2 . (4)

This results gives us

lim
µ→0

e2

V (2π)3

∫
dp
∫

dy
4π

µ2 + |p− k|2 = lim
µ→0

e2

2π2

∫
dp

1
µ2 + |p− k|2 ,

(5)

where we have used that the integrand on the left-hand side does
not depend on y and that

∫
dy = V .

Hartree-Fock ground state energy for the electron gas in
three dimensions

Introducing spherical coordinates we can rewrite the integral as

lim
µ→0

e2

2π2

∫
dp

1
µ2 + |p− k|2 =

e2

2π2

∫
dp

1
|p− k|2 = (6)

e2

π

∫ kF

0
p2dp

∫ π

0
dθ cos (θ)

1
p2 + k2 − 2pk cos (θ)

, (7)

and with the change of variables cos (θ) = u we have

e2

π

∫ kF

0
p2dp

∫ π

0
dθ cos (θ)

1
p2 + k2 − 2pk cos (θ)

=
e2

π

∫ kF

0
p2dp

∫ 1

−1
du

1
p2 + k2 − 2pku

,

which gives

e2

kπ

∫ kF

0
pdp {ln(|p + k |)− ln(|p − k|)} .

Hartree-Fock ground state energy for the electron gas in
three dimensions

Introducing new variables x = p + k and y = p − k , we obtain
after some straightforward reordering of the integral

e2

kπ

[
kkF +

k2
F − k2

kkF
ln

∣∣∣∣
k + kF
k − kF

∣∣∣∣
]
,

which gives the abovementioned expression for the single-particle
energy.

Hartree-Fock ground state energy for the electron gas in
three dimensions

Introducing the dimensionless quantity x = k/kF and the function

F (x) =
1
2

+
1− x2

4x
ln
∣∣∣∣
1 + x

1− x

∣∣∣∣,

we can rewrite the single-particle Hartree-Fock energy as

εHF
k =

~2k2

2m
− 2e2kF

π
F (k/kF ),

and dividing by the non-interacting contribution at the Fermi level,

εF0 =
~2k2

F

2m
,

we have

εHFk
εF0

= x2 − e2m

~2kFπ
F (x) = x2 − 4

πkFa0
F (x),

where a0 = 0.0529 nm is the Bohr radius, setting thereby a natural
length scale.

Hartree-Fock ground state energy for the electron gas in
three dimensions

By introducing the radius rs of a sphere whose volume is the
volume occupied by each electron, we can rewrite the previous
equation in terms of rs using that the electron density n = N/V

n =
k3
F

3π2 =
3

4πr3
s

,

we have (with kF = 1.92/rs ,

εHFk
εF0

= x2 − e2m

~2kFπ
F (x) = x2 − rs

a0
0.663F (x),

with rs ∼ 2− 6 for most metals.



Hartree-Fock band gap for the electron gas in three
dimensions

We can now define the so-called band gap, that is the scatter
between the maximal and the minimal value of the electrons in the
conductance band of a metal (up to the Fermi level). For x = 1
and rs/a0 = 4 we have

εHFk=kF

εF0
= −0.326,

and for x = 0 we have

εHF
k=0

εF0
= −2.652,

which results in a gap at the Fermi level of

∆εHF =
εHF
k=kF

εF0
− εHFk=0

εF0
= 2.326.

This quantity measures the deviation from the k = 0 single-particle
energy and the energy at the Fermi level. The general result is

∆εHF = 1 +
rs
a0

0.663.

Plot of the Hartree-Fock single-particle energy for the
three-dimensional electron gas

The following python code produces a plot of the electron energy
for a free electron (only kinetic energy) and for the Hartree-Fock
solution. We have chosen here a ratio rs/a0 = 4 and the equations
are plotted as funtions of k/fF .
import numpy as np
from math import log
from matplotlib import pyplot as plt
from matplotlib import rc, rcParams
import matplotlib.units as units
import matplotlib.ticker as ticker
rc(’text’,usetex=True)
rc(’font’,**{’family’:’serif’,’serif’:[’Hartree-Fock energy’]})
font = {’family’ : ’serif’,

’color’ : ’darkred’,
’weight’ : ’normal’,
’size’ : 16,
}

N = 100
x = np.linspace(0.0, 2.0,N)
F = 0.5+np.log(abs((1.0+x)/(1.0-x)))*(1.0-x*x)*0.25/x
y = x*x -4.0*0.663*F

plt.plot(x, y, ’b-’)
plt.plot(x, x*x, ’r-’)
plt.title(r’{\bf Hartree-Fock single-particle energy for electron gas}’, fontsize=20)
plt.text(3, -40, r’Parameters: $r_s/a_0=4$’, fontdict=font)
plt.xlabel(r’$k/k_F$’,fontsize=20)
plt.ylabel(r’$\varepsilon_k^{HF}/\varepsilon_0^F$’,fontsize=20)
# Tweak spacing to prevent clipping of ylabel
plt.subplots_adjust(left=0.15)
plt.savefig(’hartreefockspelgas.pdf’, format=’pdf’)
plt.show()

From the plot we notice that the exchange term increases
considerably the band gap compared with the non-interacting gas
of electrons.

Hartree-Fock ground state energy for the electron gas in
three dimensions

Exercise 2
We consider a system of electrons in infinite matter, the so-called
electron gas. This is a homogeneous system and the one-particle
states are given by plane wave function normalized to a volume Ω
for a box with length L (the limit L→∞ is to be taken after we
have computed various expectation values)

ψkσ(r) =
1√
Ω

exp (ikr)ξσ

where k is the wave number and ξσ is a spin function for either spin
up or down

ξσ=+1/2 =

(
1
0

)
ξσ=−1/2 =

(
0
1

)
.

We assume that we have periodic boundary conditions which limit
the allowed wave numbers to

ki =
2πni
L

i = x , y , z ni = 0,±1,±2, . . .

We assume first that the particles interact via a central, symmetric
and translationally invariant interaction V (r12) with r12 = |r1 − r2|.
The interaction is spin independent.

Hartree-Fock ground state energy for the electron gas in
three dimensions

Exercise 2
The total Hamiltonian consists then of kinetic and potential energy

Ĥ = T̂ + V̂ .

Show that the operator for the kinetic energy can be written as

T̂ =
∑

kσ

~2k2

2m
a†kσakσ.

Find also the number operator N̂ and find a corresponding
expression for the interaction V̂ expressed with creation and
annihilation operators. The expression for the interaction has to be
written in k space, even though V depends only on the relative
distance. It means that you ned to set up the Fourier transform
〈kikj |V |kmkn〉.

Hartree-Fock ground state energy for the electron gas in
three dimensions

Exercise 2
The Hamiltonian operator is given by

Ĥ = Ĥel + Ĥb + Ĥel−b,

with the electronic part

Ĥel =
N∑

i=1

p2
i

2m
+

e2

2

∑

i 6=j

e−µ|ri−rj |

|ri − rj |
,

where we have introduced an explicit convergence factor (the limit
µ→ 0 is performed after having calculated the various integrals).
Correspondingly, we have

Ĥb =
e2

2

∫ ∫
drdr′

n(r)n(r′)e−µ|r−r′|

|r − r′| ,

which is the energy contribution from the positive background
charge with density n(r) = N/Ω. Finally,

Ĥel−b = −e2

2

N∑

i=1

∫
dr

n(r)e−µ|r−xi |

|r − xi |
,

is the interaction between the electrons and the positive
background.

Hartree-Fock ground state energy for the electron gas in
three dimensions

Exercise 2
Show that

Ĥb =
e2

2
N2

Ω

4π
µ2 ,

and

Ĥel−b = −e2N
2

Ω

4π
µ2 .



Hartree-Fock ground state energy for the electron gas in
three dimensions

Exercise 2
Show thereafter that the final Hamiltonian can be written as

H = H0 + HI ,

with

H0 =
∑

kσ

~2k2

2m
a†kσakσ,

and

HI =
e2

2Ω

∑

σ1σ2

∑

q6=0,k,p

4π
q2 a

†
k+q,σ1

a†p−q,σ2
apσ2akσ1 .

Hartree-Fock ground state energy for the electron gas in
three dimensions

Exercise 2
Calculate E0/N = 〈Φ0|H|Φ0〉/N for for this system to first order in
the interaction. Show that, by using

ρ =
k3
F

3π2 =
3

4πr3
0
,

with ρ = N/Ω, r0 being the radius of a sphere representing the
volume an electron occupies and the Bohr radius a0 = ~2/e2m,
that the energy per electron can be written as

E0/N =
e2

2a0

[
2.21
r2
s

− 0.916
rs

]
.

Here we have defined rs = r0/a0 to be a dimensionless quantity.

Hartree-Fock ground state energy for the electron gas in
three dimensions

Exercise 2
Plot your results. Why is this system stable? Calculate
thermodynamical quantities like the pressure, given by

P = −
(
∂E

∂Ω

)

N

,

and the bulk modulus

B = −Ω

(
∂P

∂Ω

)

N

,

and comment your results.

Hartree-Fock ground state energy for the electron gas in
three dimensions

Solution to exercise 2
We have to show first that

Ĥb =
e2

2
N2
e

Ω

4π
µ2 ,

and

Ĥel−b = −e2N
2
e

Ω

4π
µ2 .

Hartree-Fock ground state energy for the electron gas in
three dimensions

Solution to exercise 2
And then that the final Hamiltonian can be written as

H = H0 + HI ,

with

H0 =
∑

kσ

~2k2

2me
a†kσakσ,

and

HI =
e2

2Ω

∑

σ1σ2

∑

q6=0,k,p

4π
q2 a

†
k+q,σ1

a†p−q,σ2
apσ2akσ1 .

Electron gas and HF solution

Let us now calculate the following part of the Hamiltonian

Ĥb =
e2

2

∫∫
n(r)n(r′)e−µ|r−r′|

|r − r′| drdr′,

where n(r) = Ne/Ω, the density of the positive background charge.
We define r12 = r − r′, resulting in dr12 = dr, and allowing us to
rewrite the integral as

Ĥb =
e2N2

e

2Ω2

∫∫
e−µ|r12|

|r12|
dr12dr′ =

e2N2
e

2Ω

∫
e−µ|r12|

|r12|
dr12.

Here we have used that
∫
r = Ω. We change to spherical

coordinates and the lack of angle dependencies yields a factor 4π,
resulting in

Ĥb =
4πe2N2

e

2Ω

∫ ∞

0
re−µr dr .



Hartree-Fock ground state energy for the electron gas in
three dimensions

Solution to exercise 2
Solving by partial integration
∫ ∞

0
re−µr dr =

[
− r

µ
e−µr

]∞

0
+
1
µ

∫ ∞

0
e−µr dr =

1
µ

[
− 1
µ
e−µr

]∞

0
=

1
µ2 ,

gives

Ĥb =
e2

2
N2
e

Ω

4π
µ2 .

The next term is

Ĥel−b = −e2
N∑

i=1

∫
n(r)e−µ|r−xi |

|r − xi |
r.

Hartree-Fock ground state energy for the electron gas in
three dimensions

Solution to exercise 2
Inserting n(r) and changing variables in the same way as in the
previous integral y = r − xi , we get d3y = d3r. This gives

Ĥel−b = −e2Ne

Ω

∑

i=1N

∫
e−µ|y|

|y| d3y = −4πe2Ne

Ω

N∑

i=1

∫ ∞

0
ye−µydy .

(8)

We have already seen this type of integral. The answer is

Ĥel−b = −4πe2Ne

Ω

N∑

i=1

1
µ2 ,

which gives

Ĥel−b = −e2N
2
e

Ω

4π
µ2 .

Hartree-Fock ground state energy for the electron gas in
three dimensions

Solution to exercise 2

Finally, we need to evaluate Ĥel . This term reads

Ĥel =
Ne∑

i=1

~̂p2
i

2me
+

e2

2

∑

i 6=j

e−µ|ri−rj |

ri − rj
.

The last term represents the repulsion between two electrons. It is
a central symmetric interaction and is translationally invariant. The
potential is given by the expression

v(|r|) = e2 e
µ|r|

|r| ,

which we derived in connection with the single-particle
Hartree-Fock derivation.
More material will be added here!

Preparing the ground for numerical calculations; kinetic
energy and Ewald term

The kinetic energy operator is

Ĥkin = − ~2

2m

N∑

i=1

∇2
i , (9)

where the sum is taken over all particles in the finite box. The
Ewald electron-electron interaction operator can be written as

Ĥee =
N∑

i<j

vE (ri − rj) +
1
2
Nv0, (10)

where vE (r) is the effective two-body interaction and v0 is the
self-interaction, defined as v0 = limr→0 {vE (r)− 1/r}.

Computing numerically properties of the electron gas

The negative electron charges are neutralized by a positive,
homogeneous background charge. Fraser et al. explain how the
electron-background and background-background terms, Ĥeb and
Ĥbb, vanish when using Ewald’s interaction for the
three-dimensional electron gas. Using the same arguments, one can
show that these terms are also zero in the corresponding
two-dimensional system.

Ewald correction term

In the three-dimensional electron gas, the Ewald interaction is

vE (r) =
∑

k6=0

4π
L3k2 e

ik·re−η
2k2/4

+
∑

R

1
|r − R|erfc

( |r − R|
η

)
− πη2

L3 , (11)

where L is the box side length, erfc(x) is the complementary error
function, and η is a free parameter that can take any value in the
interval (0,∞).



Interaction in momentum space

The translational vector

R = L (nxux + nyuy + nzuz) , (12)

where ui is the unit vector for dimension i , is defined for all integers
nx , ny , and nz . These vectors are used to obtain all image cells in
the entire real space. The parameter η decides how the Coulomb
interaction is divided into a short-ranged and long-ranged part, and
does not alter the total function. However, the number of
operations needed to calculate the Ewald interaction with a desired
accuracy depends on η, and η is therefore often chosen to optimize
the convergence as a function of the simulation-cell size. In our
calculations, we choose η to be an infinitesimally small positive
number, similarly as was done by Shepherd *et al.* and Roggero
*et al.*.
This gives an interaction that is evaluated only in Fourier space.

Ewald Effective interaction in two dimensions

When studying the two-dimensional electron gas, we use an Ewald
interaction that is quasi two-dimensional. The interaction is derived
in three dimensions, with Fourier discretization in only two
dimensions. The Ewald effective interaction has the form

vE (r) =
∑

k6=0

π

L2k

{
e−kzerfc

(
ηk

2
− z

η

)
+

ekzerfc
(
ηk

2
+

z

η

)}
e ik·rxy

+
∑

R

1
|r − R|erfc

( |r − R|
η

)

− 2π
L2

{
zerf

(
z

η

)
+

η√
π
e−z

2/η2
}
, (13)

where the Fourier vectors k and the position vector rxy are defined
in the (x , y) plane. When applying the interaction vE (r) to
two-dimensional systems, we set z to zero.

And in three dimensions

Similarly as in the three-dimensional case, also here we choose η to
approach zero from above. The resulting Fourier-transformed
interaction is

vη=0,z=0
E (r) =

∑

k6=0

2π
L2k

e ik·rxy . (14)

The self-interaction v0 is a constant that can be included in the
reference energy.

Antisymmetrized matrix elements in three dimensions

In the three-dimensional electron gas, the antisymmetrized matrix
elements are

〈kpmspkqmsq |ṽ |krmsrksmss 〉AS

=
4π
L3 δkp+kq ,kr+ks

{
δmspmsr

δmsqmss

(
1− δkpkr

) 1
|kr − kp|2

−δmspmss
δmsqmsr

(
1− δkpks

) 1
|ks − kp|2

}
, (15)

where the Kronecker delta functions δkpkr and δkpks ensure that the
contribution with zero momentum transfer vanishes.

Antisymmetrized matrix elements in two dimensions

Similarly, the matrix elements for the two-dimensional electron gas
are

〈kpmspkqmsq |v |krmsrksmss 〉AS

=
2π
L2 δkp+kq ,kr+ks

{
δmspmsr

δmsqmss

(
1− δkpkr

) 1
|kr − kp|

− δmspmss
δmsqmsr

(
1− δkpks

) 1
|ks − kp|

}
, (16)

where the single-particle momentum vectors kp,q,r ,s are now defined
in two dimensions.

Fock operator

In the calculations, the self-interaction constant is included in the
reference energy. We therefore get the Fock-operator matrix
elements

〈kp|f |kq〉 =
~2k2

p

2m
δkp ,kq +

∑

ki

〈kpki |v |kqki 〉AS . (17)

In work of Shepherd et al. the matrix elements were defined with
the self-interaction constant included in the two-body interaction.
This gives Fock-operator matrix elements with a gap constant.



Periodic boundary conditions and single-particle states

When using periodic boundary conditions, the discrete-momentum
single-particle basis functions

φk(r) = e ik·r/Ld/2

are associated with the single-particle energy

εnx ,ny =
~2

2m

(
2π
L

)2 (
n2
x + n2

y

)
(18)

for two-dimensional sytems and

εnx ,ny ,nz =
~2

2m

(
2π
L

)2 (
n2
x + n2

y + n2
z

)
(19)

for three-dimensional systems.

Single-particle states in two and three dimensions

We choose the single-particle basis such that both the occupied
and unoccupied single-particle spaces have a closed-shell structure.
This means that all single-particle states corresponding to energies
below a chosen cutoff are included in the basis. We study only the
unpolarized spin phase, in which all orbitals are occupied with one
spin-up and one spin-down electron.

Setting up single-particle states

The table illustrates how single-particle energies fill energy shells in
a two-dimensional electron box. Here nx and ny are the momentum
quantum numbers, n2

x + n2
y determines the single-particle energy

level, N↑↓ represents the cumulated number of spin-orbitals in an
unpolarized spin phase, and N↑↑ stands for the cumulated number
of spin-orbitals in a spin-polarized system.

Magic number for the two-dimensional electron gas
n2
x + n2

y nx ny N↑↓ N↑↑
0 0 0 2 1
1 -1 0

1 0
0 -1
0 1 10 5

2 -1 -1
-1 1
1 -1
1 1 18 9

4 -2 0
2 0
0 -2
0 2 26 13

5 -2 -1
2 -1
-2 1
2 1
-1 -2
-1 2
1 -2
1 2 42 21

Hartree-Fock benchmarks in two and three dimensions

Finally, a useful benchmark for our calculations is the expression for
the reference energy E0 per particle. Defining the T = 0 density ρ0,
we can in turn determine in three dimensions the radius r0 of a
sphere representing the volume an electron occupies (the classical
electron radius) as

r0 =

(
3

4πρ

)1/3

.

In two dimensions the corresponding quantity is

r0 =

(
1
πρ

)1/2

.

Hartree-Fock energies

One can then express the reference energy per electron in terms of
the dimensionless quantity rs = r0/a0, where we have introduced
the Bohr radius a0 = ~2/e2m. The energy per electron computed
with the reference Slater determinant can then be written as (using
hereafter only atomic units, meaning that ~ = m = e = 1)

E0/N =
1
2

[
2.21
r2
s

− 0.916
rs

]
,

for the three-dimensional electron gas. For the two-dimensional gas
the corresponding expression is (show this)

E0/N =
1
r2
s

− 8
√
2

3πrs
.



Simplifications to many-body theories

For an infinite homogeneous system, there are some particular
simplications due to the conservation of the total momentum of the
particles. By symmetry considerations, the total momentum of the
system has to be zero. Both the kinetic energy operator and the
total Hamiltonian Ĥ are assumed to be diagonal in the total
momentum K. Hence, both the reference state Φ0 and the
correlated ground state Ψ must be eigenfunctions of the operator K̂
with the corresponding eigenvalue K = 0. This leads to important
simplications to our different many-body methods. In coupled
cluster theory for example, all terms that involve single particle-hole
excitations vanish.

Specific tasks

Start by solving exercises 1 and 2 and convince yourself about
the correctness of the expressions.
Convince yourself about the Hartree-Fock results for the
two-dimensional system.
In order to start coding, you should read in parallel a text on
programming and numerical methods.
The first programming exercise is to set up the basis functions
for two and three dimensions using periodic boundary
conditions. Extend the table above to the three-dimensional
case.
Compute thereafter the Hartree-Fock energy in two and three
dimensions and make sure that your basis is large enough to
reach the so-called Hartree-Fock limit.

Screened interactions and periodic boundary conditions

As soon as you have the Hartree-Fock program functioning, you
can start looking at a modified Coulomb interaction with a
screening term, a so-called Yukawa-type interaction, that is

V (r) ≈ exp−(µr)

µr
,

where µ plays the role of an effective range parameter with
dimension inverse length.

Play around with different values of µ and check the stability
of the Hartree-Fock results as function of the number of
single-particle basis states.
Study thereafter the stability of the solutions (pick some
selected values of µ and study the Hartree-Fock results with
standard periodic boundary conditions and so-called twisted
boundary conditions.


