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Many-body perturbation theory

We assume here that we are only interested in the ground state of
the system and expand the exact wave function in term of a series
of Slater determinants

|Ψ0〉 = |Φ0〉+
∞∑

m=1

Cm|Φm〉,

where we have assumed that the true ground state is dominated by
the solution of the unperturbed problem, that is

Ĥ0|Φ0〉 = W0|Φ0〉.

The state |Ψ0〉 is not normalized, rather we have used an
intermediate normalization 〈Φ0|Ψ0〉 = 1 since we have
〈Φ0|Φ0〉 = 1.



Many-body perturbation theory

The Schroedinger equation is

Ĥ|Ψ0〉 = E |Ψ0〉,

and multiplying the latter from the left with 〈Φ0| gives

〈Φ0|Ĥ|Ψ0〉 = E 〈Φ0|Ψ0〉 = E ,

and subtracting from this equation

〈Ψ0|Ĥ0|Φ0〉 = W0〈Ψ0|Φ0〉 = W0,

and using the fact that the both operators Ĥ and Ĥ0 are hermitian
results in

∆E = E −W0 = 〈Φ0|ĤI |Ψ0〉,

which is an exact result. We call this quantity the correlation
energy.



Many-body perturbation theory

This equation forms the starting point for all perturbative
derivations. However, as it stands it represents nothing but a mere
formal rewriting of Schroedinger’s equation and is not of much
practical use. The exact wave function |Ψ0〉 is unknown. In order
to obtain a perturbative expansion, we need to expand the exact
wave function in terms of the interaction ĤI .
Here we have assumed that our model space defined by the
operator P̂ is one-dimensional, meaning that

P̂ = |Φ0〉〈Φ0|,

and

Q̂ =
∞∑

m=1

|Φm〉〈Φm|.



Many-body perturbation theory

We can thus rewrite the exact wave function as

|Ψ0〉 = (P̂ + Q̂)|Ψ0〉 = |Φ0〉+ Q̂|Ψ0〉.

Going back to the Schrödinger equation, we can rewrite it as,
adding and a subtracting a term ω|Ψ0〉 as(

ω − Ĥ0

)
|Ψ0〉 =

(
ω − E + ĤI

)
|Ψ0〉,

where ω is an energy variable to be specified later.



Many-body perturbation theory
We assume also that the resolvent of

(
ω − Ĥ0

)
exits, that is it has

an inverse which defined the unperturbed Green’s function as(
ω − Ĥ0

)−1
=

1(
ω − Ĥ0

) .
We can rewrite Schroedinger’s equation as

|Ψ0〉 =
1

ω − Ĥ0

(
ω − E + ĤI

)
|Ψ0〉,

and multiplying from the left with Q̂ results in

Q̂|Ψ0〉 =
Q̂

ω − Ĥ0

(
ω − E + ĤI

)
|Ψ0〉,

which is possible since we have defined the operator Q̂ in terms of
the eigenfunctions of Ĥ.



Many-body perturbation theory

These operators commute meaning that

Q̂
1(

ω − Ĥ0

)Q̂ = Q̂
1(

ω − Ĥ0

) =
Q̂(

ω − Ĥ0

) .
With these definitions we can in turn define the wave function as

|Ψ0〉 = |Φ0〉+
Q̂

ω − Ĥ0

(
ω − E + ĤI

)
|Ψ0〉.

This equation is again nothing but a formal rewrite of Schrödinger’s
equation and does not represent a practical calculational scheme. It
is a non-linear equation in two unknown quantities, the energy E
and the exact wave function |Ψ0〉. We can however start with a
guess for |Ψ0〉 on the right hand side of the last equation.



Many-body perturbation theory

The most common choice is to start with the function which is
expected to exhibit the largest overlap with the wave function we
are searching after, namely |Φ0〉. This can again be inserted in the
solution for |Ψ0〉 in an iterative fashion and if we continue along
these lines we end up with

|Ψ0〉 =
∞∑
i=0

{
Q̂

ω − Ĥ0

(
ω − E + ĤI

)}i

|Φ0〉,

for the wave function and

∆E =
∞∑
i=0

〈Φ0|ĤI

{
Q̂

ω − Ĥ0

(
ω − E + ĤI

)}i

|Φ0〉,

which is now a perturbative expansion of the exact energy in terms
of the interaction ĤI and the unperturbed wave function |Ψ0〉.



Many-body perturbation theory

In our equations for |Ψ0〉 and ∆E in terms of the unperturbed
solutions |Φi 〉 we have still an undetermined parameter ω and a
dependecy on the exact energy E . Not much has been gained thus
from a practical computational point of view.



Many-body perturbation theory
In Brilluoin-Wigner perturbation theory it is customary to set
ω = E . This results in the following perturbative expansion for the
energy ∆E

∆E =
∞∑
i=0

〈Φ0|ĤI

{
Q̂

ω − Ĥ0

(
ω − E + ĤI

)}i

|Φ0〉 =

〈Φ0|

(
ĤI + ĤI

Q̂

E − Ĥ0
ĤI + ĤI

Q̂

E − Ĥ0
ĤI

Q̂

E − Ĥ0
ĤI + . . .

)
|Φ0〉.

∆E =
∞∑
i=0

〈Φ0|ĤI

{
Q̂

ω − Ĥ0

(
ω − E + ĤI

)}i

|Φ0〉 =

〈Φ0|

(
ĤI + ĤI

Q̂

E − Ĥ0
ĤI + ĤI

Q̂

E − Ĥ0
ĤI

Q̂

E − Ĥ0
ĤI + . . .

)
|Φ0〉.

This expression depends however on the exact energy E and is again
not very convenient from a practical point of view. It can obviously
be solved iteratively, by starting with a guess for E and then solve
till some kind of self-consistency criterion has been reached.
Actually, the above expression is nothing but a rewrite again of the
full Schrödinger equation.



Many-body perturbation theory

Defining e = E − Ĥ0 and recalling that Ĥ0 commutes with Q̂ by
construction and that Q̂ is an idempotent operator Q̂2 = Q̂. Using
this equation in the above expansion for ∆E we can write the
denominator

Q̂
1

ê − Q̂ĤI Q̂
=

Q̂

[
1
ê

+
1
ê
Q̂ĤI Q̂

1
ê

+
1
ê
Q̂ĤI Q̂

1
ê
Q̂ĤI Q̂

1
ê

+ . . .

]
Q̂.



Many-body perturbation theory

Inserted in the expression for ∆E leads to

∆E = 〈Φ0|ĤI + ĤI Q̂
1

E − Ĥ0 − Q̂ĤI Q̂
Q̂ĤI |Φ0〉.

In RS perturbation theory we set ω = W0 and obtain the following
expression for the energy difference

∆E =
∞∑
i=0

〈Φ0|ĤI

{
Q̂

W0 − Ĥ0

(
ĤI −∆E

)}i

|Φ0〉 =

〈Φ0|

(
ĤI + ĤI

Q̂

W0 − Ĥ0
(ĤI −∆E ) + ĤI

Q̂

W0 − Ĥ0
(ĤI −∆E )

Q̂

W0 − Ĥ0
(ĤI −∆E ) + . . .

)
|Φ0〉.



Many-body perturbation theory

Recalling that Q̂ commutes with Ĥ0 and since ∆E is a constant we
obtain that

Q̂∆E |Φ0〉 = Q̂∆E |Q̂Φ0〉 = 0.

Inserting this results in the expression for the energy results in

∆E = 〈Φ0|

(
ĤI + ĤI

Q̂

W0 − Ĥ0
ĤI + ĤI

Q̂

W0 − Ĥ0
(ĤI −∆E )

Q̂

W0 − Ĥ0
ĤI + . . .

)
|Φ0〉.



Many-body perturbation theory

We can now this expression in terms of a perturbative expression in
terms of ĤI where we iterate the last expression in terms of ∆E

∆E =
∞∑
i=1

∆E (i).

We get the following expression for ∆E (i)

∆E (1) = 〈Φ0|ĤI |Φ0〉,

which is just the contribution to first order in perturbation theory,

∆E (2) = 〈Φ0|ĤI
Q̂

W0 − Ĥ0
ĤI |Φ0〉,

which is the contribution to second order.



Many-body perturbation theory

∆E (3) = 〈Φ0|ĤI
Q̂

W0 − Ĥ0
ĤI

Q̂

W0 − Ĥ0
ĤIΦ0〉−〈Φ0|ĤI

Q̂

W0 − Ĥ0
〈Φ0|ĤI |Φ0〉

Q̂

W0 − Ĥ0
ĤI |Φ0〉,

being the third-order contribution.



Interpreting the correlation energy and the wave operator
In the shell-model lectures we showed that we could rewrite the
exact state function for say the ground state, as a linear expansion
in terms of all possible Slater determinants. That is, we define the
ansatz for the ground state as

|Φ0〉 =

∏
i≤F

â†i

 |0〉,
where the index i defines different single-particle states up to the
Fermi level. We have assumed that we have N fermions. A given
one-particle-one-hole (1p1h) state can be written as

|Φa
i 〉 = â†aâi |Φ0〉,

while a 2p2h state can be written as

|Φab
ij 〉 = â†aâ

†
bâj âi |Φ0〉,

and a general ApAh state as

|Φabc...
ijk... 〉 = â†aâ

†
bâ
†
c . . . âk âj âi |Φ0〉.



Interpreting the correlation energy and the wave operator
We use letters ijkl . . . for states below the Fermi level and abcd . . .
for states above the Fermi level. A general single-particle state is
given by letters pqrs . . . .
We can then expand our exact state function for the ground state
as

|Ψ0〉 = C0|Φ0〉+
∑
ai

C a
i |Φa

i 〉+
∑
abij

C ab
ij |Φab

ij 〉+ · · · = (C0 + Ĉ )|Φ0〉,

where we have introduced the so-called correlation operator

Ĉ =
∑
ai

C a
i â
†
aâi +

∑
abij

C ab
ij â†aâ

†
bâj âi + . . .

Since the normalization of Ψ0 is at our disposal and since C0 is by
hypothesis non-zero, we may arbitrarily set C0 = 1 with
corresponding proportional changes in all other coefficients. Using
this so-called intermediate normalization we have

〈Ψ0|Φ0〉 = 〈Φ0|Φ0〉 = 1,

resulting in
|Ψ0〉 = (1 + Ĉ )|Φ0〉.



Interpreting the correlation energy and the wave operator

In a shell-model calculation, the unknown coefficients in Ĉ are the
eigenvectors which result from the diagonalization of the
Hamiltonian matrix.
How can we use perturbation theory to determine the same
coefficients? Let us study the contributions to second order in the
interaction, namely

∆E (2) = 〈Φ0|ĤI
Q̂

W0 − Ĥ0
ĤI |Φ0〉.

The intermediate states given by Q̂ can at most be of a 2p − 2h
nature if we have a two-body Hamiltonian. This means that second
order in the perturbation theory can have 1p − 1h and 2p − 2h at
most as intermediate states. When we diagonalize, these
contributions are included to infinite order. This means that
higher-orders in perturbation theory bring in more complicated
correlations.



Interpreting the correlation energy and the wave operator

If we limit the attention to a Hartree-Fock basis, then we have that
〈Φ0|ĤI |2p − 2h〉 is the only contribution and the contribution to
the energy reduces to

∆E (2) =
1
4

∑
abij

〈ij |v̂ |ab〉 〈ab|v̂ |ij〉
εi + εj − εa − εb

.



Interpreting the correlation energy and the wave operator

If we compare this to the correlation energy obtained from full
configuration interaction theory with a Hartree-Fock basis, we
found that

E − E0 = ∆E =
∑
abij

〈ij |v̂ |ab〉C ab
ij ,

where the energy E0 is the reference energy and ∆E defines the
so-called correlation energy.
We see that if we set

C ab
ij =

1
4

〈ab|v̂ |ij〉
εi + εj − εa − εb

,

we have a perfect agreement between FCI and MBPT. However,
FCI includes such 2p − 2h correlations to infinite order. In order to
make a meaningful comparison we would at least need to sum such
correlations to infinite order in perturbation theory.



Interpreting the correlation energy and the wave operator
Summing up, we can see that

I MBPT introduces order-by-order specific correlations and we
make comparisons with exact calculations like FCI

I At every order, we can calculate all contributions since they
are well-known and either tabulated or calculated on the fly.

I MBPT is a non-variational theory and there is no guarantee
that higher orders will improve the convergence.

I However, since FCI calculations are limited by the size of the
Hamiltonian matrices to diagonalize (today’s most efficient
codes can attach dimensionalities of ten billion basis states,
MBPT can function as an approximative method which gives a
straightforward (but tedious) calculation recipe.

I MBPT has been widely used to compute effective interactions
for the nuclear shell-model.

I But there are better methods which sum to infinite order
important correlations. Coupled cluster theory is one of these
methods.


