
Variational Monte Carlo methods

Morten Hjorth-Jensen1,2

National Superconducting Cyclotron Laboratory and Department of Physics and
Astronomy, Michigan State University, East Lansing, MI 48824, USA1

Department of Physics, University of Oslo, Oslo, Norway2

Spring 2016



Quantum Monte Carlo Motivation

Given a hamiltonian H and a trial wave function ΨT , the variational
principle states that the expectation value of 〈H〉, defined through

E [H] = 〈H〉 =

∫
dRΨ∗T (R)H(R)ΨT (R)∫

dRΨ∗T (R)ΨT (R)
,

is an upper bound to the ground state energy E0 of the hamiltonian
H, that is

E0 ≤ 〈H〉.

In general, the integrals involved in the calculation of various
expectation values are multi-dimensional ones. Traditional
integration methods such as the Gauss-Legendre will not be
adequate for say the computation of the energy of a many-body
system.



Quantum Monte Carlo Motivation

The trial wave function can be expanded in the eigenstates of the
hamiltonian since they form a complete set, viz.,

ΨT (R) =
∑
i

aiΨi (R),

and assuming the set of eigenfunctions to be normalized one obtains∑
nm a∗man

∫
dRΨ∗m(R)H(R)Ψn(R)∑

nm a∗man
∫
dRΨ∗m(R)Ψn(R)

=

∑
n a

2
nEn∑

n a
2
n

≥ E0,

where we used that H(R)Ψn(R) = EnΨn(R). In general, the
integrals involved in the calculation of various expectation values
are multi-dimensional ones. The variational principle yields the
lowest state of a given symmetry.



Quantum Monte Carlo Motivation

In most cases, a wave function has only small values in large parts
of configuration space, and a straightforward procedure which uses
homogenously distributed random points in configuration space will
most likely lead to poor results. This may suggest that some kind
of importance sampling combined with e.g., the Metropolis
algorithm may be a more efficient way of obtaining the ground
state energy. The hope is then that those regions of configurations
space where the wave function assumes appreciable values are
sampled more efficiently.



Quantum Monte Carlo Motivation

The tedious part in a VMC calculation is the search for the
variational minimum. A good knowledge of the system is required in
order to carry out reasonable VMC calculations. This is not always
the case, and often VMC calculations serve rather as the starting
point for so-called diffusion Monte Carlo calculations (DMC). DMC
is a way of solving exactly the many-body Schroedinger equation by
means of a stochastic procedure. A good guess on the binding
energy and its wave function is however necessary. A carefully
performed VMC calculation can aid in this context.



Quantum Monte Carlo Motivation

I Construct first a trial wave function ψT (R,α), for a
many-body system consisting of N particles located at
positions

R = (R1, . . . ,RN). The trial wave function depends on α
variational parameters α = (α1, . . . , αM).

I Then we evaluate the expectation value of the hamiltonian H

E [H] = 〈H〉 =

∫
dRΨ∗T (R,α)H(R)ΨT (R,α)∫

dRΨ∗T (R,α)ΨT (R,α)
.

I Thereafter we vary α according to some minimization
algorithm and return to the first step.



Quantum Monte Carlo Motivation

Basic steps
Choose a trial wave function ψT (R).

P(R) =
|ψT (R)|2∫
|ψT (R)|2 dR

.

This is our new probability distribution function (PDF). The
approximation to the expectation value of the Hamiltonian is now

E [H(α)] =

∫
dRΨ∗T (R,α)H(R)ΨT (R,α)∫

dRΨ∗T (R,α)ΨT (R,α)
.



Quantum Monte Carlo Motivation

Define a new quantity

EL(R,α) =
1

ψT (R,α)
HψT (R,α),

called the local energy, which, together with our trial PDF yields

E [H(α)] =

∫
P(R)EL(R)dR ≈ 1

N

N∑
i=1

P(Ri ,α)EL(Ri ,α)

with N being the number of Monte Carlo samples.



Quantum Monte Carlo

The Algorithm for performing a variational Monte Carlo
calculations runs thus as this

I Initialisation: Fix the number of Monte Carlo steps. Choose an
initial R and variational parameters α and calculate |ψαT (R)|2.

I Initialise the energy and the variance and start the Monte
Carlo calculation.

I Calculate a trial position Rp = R + r ∗ step where r is a
random variable r ∈ [0, 1].

I Metropolis algorithm to accept or reject this move
w = P(Rp)/P(R).

I If the step is accepted, then we set R = Rp.
I Update averages

I Finish and compute final averages.

Observe that the jumping in space is governed by the variable step.
This is Called brute-force sampling. Need importance sampling to
get more relevant sampling, see lectures below.



Quantum Monte Carlo: hydrogen atom
The radial Schroedinger equation for the hydrogen atom can be
written as

− ~2

2m
∂2u(r)

∂r2 −
(
ke2

r
− ~2l(l + 1)

2mr2

)
u(r) = Eu(r),

or with dimensionless variables

−1
2
∂2u(ρ)

∂ρ2 − u(ρ)

ρ
+

l(l + 1)

2ρ2 u(ρ)− λu(ρ) = 0,

with the hamiltonian

H = −1
2
∂2

∂ρ2 −
1
ρ

+
l(l + 1)

2ρ2 .

Use variational parameter α in the trial wave function

uαT (ρ) = αρe−αρ.



Quantum Monte Carlo: hydrogen atom

Inserting this wave function into the expression for the local energy
EL gives

EL(ρ) = −1
ρ
− α

2

(
α− 2

ρ

)
.

A simple variational Monte Carlo calculation results in
α 〈H〉 σ2 σ/

√
N

7.00000E-01 -4.57759E-01 4.51201E-02 6.71715E-04
8.00000E-01 -4.81461E-01 3.05736E-02 5.52934E-04
9.00000E-01 -4.95899E-01 8.20497E-03 2.86443E-04
1.00000E-00 -5.00000E-01 0.00000E+00 0.00000E+00
1.10000E+00 -4.93738E-01 1.16989E-02 3.42036E-04
1.20000E+00 -4.75563E-01 8.85899E-02 9.41222E-04
1.30000E+00 -4.54341E-01 1.45171E-01 1.20487E-03



Quantum Monte Carlo: hydrogen atom

We note that at α = 1 we obtain the exact result, and the variance
is zero, as it should. The reason is that we then have the exact
wave function, and the action of the hamiltionan on the wave
function

Hψ = constant× ψ,

yields just a constant. The integral which defines various
expectation values involving moments of the hamiltonian becomes
then

〈Hn〉 =

∫
dRΨ∗T (R)Hn(R)ΨT (R)∫

dRΨ∗T (R)ΨT (R)
= constant×

∫
dRΨ∗T (R)ΨT (R)∫
dRΨ∗T (R)ΨT (R)

= constant.

This gives an important information: the exact wave
function leads to zero variance! Variation is then performed by
minimizing both the energy and the variance.



Quantum Monte Carlo: the helium atom

The helium atom consists of two electrons and a nucleus with
charge Z = 2. The contribution to the potential energy due to the
attraction from the nucleus is

−2ke2

r1
− 2ke2

r2
,

and if we add the repulsion arising from the two interacting
electrons, we obtain the potential energy

V (r1, r2) = −2ke2

r1
− 2ke2

r2
+

ke2

r12
,

with the electrons separated at a distance r12 = |r1 − r2|.



Quantum Monte Carlo: the helium atom

The hamiltonian becomes then

Ĥ = −~2∇2
1

2m
− ~2∇2

2
2m

− 2ke2

r1
− 2ke2

r2
+

ke2

r12
,

and Schroedingers equation reads

Ĥψ = Eψ.

All observables are evaluated with respect to the probability
distribution

P(R) =
|ψT (R)|2∫
|ψT (R)|2 dR

.

generated by the trial wave function. The trial wave function must
approximate an exact eigenstate in order that accurate results are
to be obtained.



Quantum Monte Carlo: the helium atom

Choice of trial wave function for Helium: Assume r1 → 0.

EL(R) =
1

ψT (R)
HψT (R) =

1
ψT (R)

(
−1
2
∇2

1 −
Z

r1

)
ψT (R)+finite terms.

EL(R) =
1

RT (r1)

(
−1
2
d2

dr2
1
− 1

r1

d

dr1
− Z

r1

)
RT (r1) + finite terms

For small values of r1, the terms which dominate are

lim
r1→0

EL(R) =
1

RT (r1)

(
− 1
r1

d

dr1
− Z

r1

)
RT (r1),

since the second derivative does not diverge due to the finiteness of
Ψ at the origin.



Quantum Monte Carlo: the helium atom
This results in

1
RT (r1)

dRT (r1)

dr1
= −Z ,

and
RT (r1) ∝ e−Zr1 .

A similar condition applies to electron 2 as well. For orbital
momenta l > 0 we have

1
RT (r)

dRT (r)

dr
= − Z

l + 1
.

Similarly, studying the case r12 → 0 we can write a possible trial
wave function as

ψT (R) = e−α(r1+r2)eβr12 .

The last equation can be generalized to

ψT (R) = φ(r1)φ(r2) . . . φ(rN)
∏
i<j

f (rij),

for a system with N electrons or particles.



The first attempt at solving the helium atom

During the development of our code we need to make several
checks. It is also very instructive to compute a closed form
expression for the local energy. Since our wave function is rather
simple it is straightforward to find an analytic expressions. Consider
first the case of the simple helium function

ΨT (r1, r2) = e−α(r1+r2)

The local energy is for this case

EL1 = (α− Z )

(
1
r1

+
1
r2

)
+

1
r12
− α2

which gives an expectation value for the local energy given by

〈EL1〉 = α2 − 2α
(
Z − 5

16

)



The first attempt at solving the Helium atom

With closed form formulae we can speed up the computation of the
correlation. In our case we write it as

ΨC = exp

∑
i<j

arij
1 + βrij

,
which means that the gradient needed for the so-called quantum
force and local energy can be calculated analytically. This will speed
up your code since the computation of the correlation part and the
Slater determinant are the most time consuming parts in your code.
We will refer to this correlation function as ΨC or the linear
Pade-Jastrow.



The first attempt at solving the Helium atom

We can test this by computing the local energy for our helium wave
function

ψT (r1, r2) = exp (−α(r1 + r2)) exp
(

r12

2(1 + βr12)

)
,

with α and β as variational parameters.
The local energy is for this case

EL2 = EL1+
1

2(1 + βr12)2

{
α(r1 + r2)

r12
(1− r1r2

r1r2
)− 1

2(1 + βr12)2 −
2
r12

+
2β

1 + βr12

}
It is very useful to test your code against these expressions. It
means also that you don’t need to compute a derivative numerically
as discussed in the code example below.



The first attempt at solving the Helium atom
For the computation of various derivatives with different types of
wave functions, you will find it useful to use python with symbolic
python, that is sympy, see online manual. Using sympy allows you
autogenerate both Latex code as well c++, python or Fortran
codes. Here you will find some simple examples. We choose the 2s
hydrogen-orbital (not normalized) as an example

φ2s(r) = (Zr − 2) exp−(
1
2
Zr),

with r2 = x2 + y2 + z2.
from sympy import symbols, diff, exp, sqrt
x, y, z, Z = symbols(’x y z Z’)
r = sqrt(x*x + y*y + z*z)
r
phi = (Z*r - 2)*exp(-Z*r/2)
phi
diff(phi, x)

This doesn’t look very nice, but sympy provides several functions
that allow for improving and simplifying the output.

http://docs.sympy.org/latest/index.html


The first attempt at solving the Helium atom

We can improve our output by factorizing and substituting
expressions
from sympy import symbols, diff, exp, sqrt, factor, Symbol, printing
x, y, z, Z = symbols(’x y z Z’)
r = sqrt(x*x + y*y + z*z)
phi = (Z*r - 2)*exp(-Z*r/2)
R = Symbol(’r’) #Creates a symbolic equivalent of r
#print latex and c++ code
print printing.latex(diff(phi, x).factor().subs(r, R))
print printing.ccode(diff(phi, x).factor().subs(r, R))



The first attempt at solving the Helium atom

We can in turn look at second derivatives
from sympy import symbols, diff, exp, sqrt, factor, Symbol, printing
x, y, z, Z = symbols(’x y z Z’)
r = sqrt(x*x + y*y + z*z)
phi = (Z*r - 2)*exp(-Z*r/2)
R = Symbol(’r’) #Creates a symbolic equivalent of r
(diff(diff(phi, x), x) + diff(diff(phi, y), y) + diff(diff(phi, z), z)).factor().subs(r, R)
# Collect the Z values
(diff(diff(phi, x), x) + diff(diff(phi, y), y) +diff(diff(phi, z), z)).factor().collect(Z).subs(r, R)
# Factorize also the r**2 terms
(diff(diff(phi, x), x) + diff(diff(phi, y), y) + diff(diff(phi, z), z)).factor().collect(Z).subs(r, R).subs(r**2, R**2).factor()
print printing.ccode((diff(diff(phi, x), x) + diff(diff(phi, y), y) + diff(diff(phi, z), z)).factor().collect(Z).subs(r, R).subs(r**2, R**2).factor())

With some practice this allows one to be able to check one’s own
calculation and translate automatically into code lines.



The first attempt at solving the Helium atom

The c++ code with a VMC Solver class, main program first
#include "vmcsolver.h"
#include <iostream>
using namespace std;

int main()
{

VMCSolver *solver = new VMCSolver();
solver->runMonteCarloIntegration();
return 0;

}



The first attempt at solving the Helium atom
The c++ code with a VMC Solver class, the VMCSolver
header file
#ifndef VMCSOLVER_H
#define VMCSOLVER_H
#include <armadillo>
using namespace arma;
class VMCSolver
{
public:

VMCSolver();
void runMonteCarloIntegration();

private:
double waveFunction(const mat &r);
double localEnergy(const mat &r);
int nDimensions;
int charge;
double stepLength;
int nParticles;
double h;
double h2;
long idum;
double alpha;
int nCycles;
mat rOld;
mat rNew;

};
#endif // VMCSOLVER_H



The first attempt at solving the Helium atom

The c++ code with a VMC Solver class, VMCSolver codes,
initialize
#include "vmcsolver.h"
#include "lib.h"
#include <armadillo>
#include <iostream>
using namespace arma;
using namespace std;

VMCSolver::VMCSolver() :
nDimensions(3),
charge(2),
stepLength(1.0),
nParticles(2),
h(0.001),
h2(1000000),
idum(-1),
alpha(0.5*charge),
nCycles(1000000)

{
}



The first attempt at solving the Helium atom
The c++ code with a VMC Solver class, VMCSolver codes
void VMCSolver::runMonteCarloIntegration()
{

rOld = zeros<mat>(nParticles, nDimensions);
rNew = zeros<mat>(nParticles, nDimensions);
double waveFunctionOld = 0;
double waveFunctionNew = 0;
double energySum = 0;
double energySquaredSum = 0;
double deltaE;
// initial trial positions
for(int i = 0; i < nParticles; i++) {

for(int j = 0; j < nDimensions; j++) {
rOld(i,j) = stepLength * (ran2(&idum) - 0.5);

}
}
rNew = rOld;
// loop over Monte Carlo cycles
for(int cycle = 0; cycle < nCycles; cycle++) {

// Store the current value of the wave function
waveFunctionOld = waveFunction(rOld);
// New position to test
for(int i = 0; i < nParticles; i++) {

for(int j = 0; j < nDimensions; j++) {
rNew(i,j) = rOld(i,j) + stepLength*(ran2(&idum) - 0.5);

}
// Recalculate the value of the wave function
waveFunctionNew = waveFunction(rNew);
// Check for step acceptance (if yes, update position, if no, reset position)
if(ran2(&idum) <= (waveFunctionNew*waveFunctionNew) / (waveFunctionOld*waveFunctionOld)) {

for(int j = 0; j < nDimensions; j++) {
rOld(i,j) = rNew(i,j);
waveFunctionOld = waveFunctionNew;

}
} else {

for(int j = 0; j < nDimensions; j++) {
rNew(i,j) = rOld(i,j);

}
}
// update energies
deltaE = localEnergy(rNew);
energySum += deltaE;
energySquaredSum += deltaE*deltaE;

}
}
double energy = energySum/(nCycles * nParticles);
double energySquared = energySquaredSum/(nCycles * nParticles);
cout << "Energy: " << energy << " Energy (squared sum): " << energySquared << endl;

}



The first attempt at solving the Helium atom
The c++ code with a VMC Solver class, VMCSolver codes
double VMCSolver::localEnergy(const mat &r)
{

mat rPlus = zeros<mat>(nParticles, nDimensions);
mat rMinus = zeros<mat>(nParticles, nDimensions);
rPlus = rMinus = r;
double waveFunctionMinus = 0;
double waveFunctionPlus = 0;
double waveFunctionCurrent = waveFunction(r);
// Kinetic energy, brute force derivations
double kineticEnergy = 0;
for(int i = 0; i < nParticles; i++) {

for(int j = 0; j < nDimensions; j++) {
rPlus(i,j) += h;
rMinus(i,j) -= h;
waveFunctionMinus = waveFunction(rMinus);
waveFunctionPlus = waveFunction(rPlus);
kineticEnergy -= (waveFunctionMinus + waveFunctionPlus - 2 * waveFunctionCurrent);
rPlus(i,j) = r(i,j);
rMinus(i,j) = r(i,j);

}
}
kineticEnergy = 0.5 * h2 * kineticEnergy / waveFunctionCurrent;
// Potential energy
double potentialEnergy = 0;
double rSingleParticle = 0;
for(int i = 0; i < nParticles; i++) {

rSingleParticle = 0;
for(int j = 0; j < nDimensions; j++) {

rSingleParticle += r(i,j)*r(i,j);
}
potentialEnergy -= charge / sqrt(rSingleParticle);

}
// Contribution from electron-electron potential
double r12 = 0;
for(int i = 0; i < nParticles; i++) {

for(int j = i + 1; j < nParticles; j++) {
r12 = 0;
for(int k = 0; k < nDimensions; k++) {

r12 += (r(i,k) - r(j,k)) * (r(i,k) - r(j,k));
}
potentialEnergy += 1 / sqrt(r12);

}
}
return kineticEnergy + potentialEnergy;

}



The first attempt at solving the Helium atom

The c++ code with a VMC Solver class, VMCSolver codes
double VMCSolver::waveFunction(const mat &r)
{

double argument = 0;
for(int i = 0; i < nParticles; i++) {

double rSingleParticle = 0;
for(int j = 0; j < nDimensions; j++) {

rSingleParticle += r(i,j) * r(i,j);
}
argument += sqrt(rSingleParticle);

}
return exp(-argument * alpha);

}



The first attempt at solving the Helium atom
The c++ code with a VMC Solver class, the VMCSolver
header file
#include <armadillo>
#include <iostream>
using namespace arma;
using namespace std;
double ran2(long *);

class VMCSolver
{
public:

VMCSolver();
void runMonteCarloIntegration();

private:
double waveFunction(const mat &r);
double localEnergy(const mat &r);
int nDimensions;
int charge;
double stepLength;
int nParticles;
double h;
double h2;
long idum;
double alpha;
int nCycles;
mat rOld;
mat rNew;

};

VMCSolver::VMCSolver() :
nDimensions(3),
charge(2),
stepLength(1.0),
nParticles(2),
h(0.001),
h2(1000000),
idum(-1),
alpha(0.5*charge),
nCycles(1000000)

{
}

void VMCSolver::runMonteCarloIntegration()
{

rOld = zeros<mat>(nParticles, nDimensions);
rNew = zeros<mat>(nParticles, nDimensions);
double waveFunctionOld = 0;
double waveFunctionNew = 0;
double energySum = 0;
double energySquaredSum = 0;
double deltaE;
// initial trial positions
for(int i = 0; i < nParticles; i++) {

for(int j = 0; j < nDimensions; j++) {
rOld(i,j) = stepLength * (ran2(&idum) - 0.5);

}
}
rNew = rOld;
// loop over Monte Carlo cycles
for(int cycle = 0; cycle < nCycles; cycle++) {

// Store the current value of the wave function
waveFunctionOld = waveFunction(rOld);
// New position to test
for(int i = 0; i < nParticles; i++) {

for(int j = 0; j < nDimensions; j++) {
rNew(i,j) = rOld(i,j) + stepLength*(ran2(&idum) - 0.5);

}
// Recalculate the value of the wave function
waveFunctionNew = waveFunction(rNew);
// Check for step acceptance (if yes, update position, if no, reset position)
if(ran2(&idum) <= (waveFunctionNew*waveFunctionNew) / (waveFunctionOld*waveFunctionOld)) {

for(int j = 0; j < nDimensions; j++) {
rOld(i,j) = rNew(i,j);
waveFunctionOld = waveFunctionNew;

}
} else {

for(int j = 0; j < nDimensions; j++) {
rNew(i,j) = rOld(i,j);

}
}
// update energies
deltaE = localEnergy(rNew);
energySum += deltaE;
energySquaredSum += deltaE*deltaE;

}
}
double energy = energySum/(nCycles * nParticles);
double energySquared = energySquaredSum/(nCycles * nParticles);
cout << "Energy: " << energy << " Energy (squared sum): " << energySquared << endl;

}

double VMCSolver::localEnergy(const mat &r)
{

mat rPlus = zeros<mat>(nParticles, nDimensions);
mat rMinus = zeros<mat>(nParticles, nDimensions);
rPlus = rMinus = r;
double waveFunctionMinus = 0;
double waveFunctionPlus = 0;
double waveFunctionCurrent = waveFunction(r);
// Kinetic energy, brute force derivations
double kineticEnergy = 0;
for(int i = 0; i < nParticles; i++) {

for(int j = 0; j < nDimensions; j++) {
rPlus(i,j) += h;
rMinus(i,j) -= h;
waveFunctionMinus = waveFunction(rMinus);
waveFunctionPlus = waveFunction(rPlus);
kineticEnergy -= (waveFunctionMinus + waveFunctionPlus - 2 * waveFunctionCurrent);
rPlus(i,j) = r(i,j);
rMinus(i,j) = r(i,j);

}
}
kineticEnergy = 0.5 * h2 * kineticEnergy / waveFunctionCurrent;
// Potential energy
double potentialEnergy = 0;
double rSingleParticle = 0;
for(int i = 0; i < nParticles; i++) {

rSingleParticle = 0;
for(int j = 0; j < nDimensions; j++) {

rSingleParticle += r(i,j)*r(i,j);
}
potentialEnergy -= charge / sqrt(rSingleParticle);

}
// Contribution from electron-electron potential
double r12 = 0;
for(int i = 0; i < nParticles; i++) {

for(int j = i + 1; j < nParticles; j++) {
r12 = 0;
for(int k = 0; k < nDimensions; k++) {

r12 += (r(i,k) - r(j,k)) * (r(i,k) - r(j,k));
}
potentialEnergy += 1 / sqrt(r12);

}
}
return kineticEnergy + potentialEnergy;

}

double VMCSolver::waveFunction(const mat &r)
{

double argument = 0;
for(int i = 0; i < nParticles; i++) {

double rSingleParticle = 0;
for(int j = 0; j < nDimensions; j++) {

rSingleParticle += r(i,j) * r(i,j);
}
argument += sqrt(rSingleParticle);

}
return exp(-argument * alpha);

}

/*
** The function
** ran2()
** is a long periode (> 2 x 10^18) random number generator of
** L’Ecuyer and Bays-Durham shuffle and added safeguards.
** Call with idum a negative integer to initialize; thereafter,
** do not alter idum between sucessive deviates in a
** sequence. RNMX should approximate the largest floating point value
** that is less than 1.
** The function returns a uniform deviate between 0.0 and 1.0
** (exclusive of end-point values).
*/

#define IM1 2147483563
#define IM2 2147483399
#define AM (1.0/IM1)
#define IMM1 (IM1-1)
#define IA1 40014
#define IA2 40692
#define IQ1 53668
#define IQ2 52774
#define IR1 12211
#define IR2 3791
#define NTAB 32
#define NDIV (1+IMM1/NTAB)
#define EPS 1.2e-7
#define RNMX (1.0-EPS)

double ran2(long *idum)
{

int j;
long k;
static long idum2 = 123456789;
static long iy=0;
static long iv[NTAB];
double temp;

if(*idum <= 0) {
if(-(*idum) < 1) *idum = 1;
else *idum = -(*idum);
idum2 = (*idum);
for(j = NTAB + 7; j >= 0; j--) {

k = (*idum)/IQ1;
*idum = IA1*(*idum - k*IQ1) - k*IR1;
if(*idum < 0) *idum += IM1;
if(j < NTAB) iv[j] = *idum;

}
iy=iv[0];

}
k = (*idum)/IQ1;
*idum = IA1*(*idum - k*IQ1) - k*IR1;
if(*idum < 0) *idum += IM1;
k = idum2/IQ2;
idum2 = IA2*(idum2 - k*IQ2) - k*IR2;
if(idum2 < 0) idum2 += IM2;
j = iy/NDIV;
iy = iv[j] - idum2;
iv[j] = *idum;
if(iy < 1) iy += IMM1;
if((temp = AM*iy) > RNMX) return RNMX;
else return temp;

}
#undef IM1
#undef IM2
#undef AM
#undef IMM1
#undef IA1
#undef IA2
#undef IQ1
#undef IQ2
#undef IR1
#undef IR2
#undef NTAB
#undef NDIV
#undef EPS
#undef RNMX

// End: function ran2()

#include <iostream>
using namespace std;

int main()
{

VMCSolver *solver = new VMCSolver();
solver->runMonteCarloIntegration();
return 0;

}



The first attempt at solving the Helium atom

Exercises for first lab session, Thursday 22

I If you have never used git, Qt, armadillo etc, get familiar with
them, see the guides at the official UiO website of the course.

I Study the simple program at this link
I Implement the closed form expression for the local energy and

the so-called quantum force
I Convince yourself that the closed form expressions are correct.

Check both wave functions
I Implement the closed form expression for the local energy and

compare with a code where the second derivatives are
computed numerically.

https://github.com/CompPhysics/ComputationalPhysics2/tree/gh-pages/doc/pub/vmc/programs/


The Metropolis algorithm

The Metropolis algorithm , see the original article (see also the
FYS3150 lectures) was invented by Metropolis et. al and is often
simply called the Metropolis algorithm. It is a method to sample a
normalized probability distribution by a stochastic process. We
define P(n)

i to be the probability for finding the system in the state
i at step n. The algorithm is then

I Sample a possible new state j with some probability Ti→j .
I Accept the new state j with probability Ai→j and use it as the

next sample. With probability 1− Ai→j the move is rejected
and the original state i is used again as a sample.

http://scitation.aip.org/content/aip/journal/jcp/21/6/10.1063/1.1699114
http://www.uio.no/studier/emner/matnat/fys/FYS3150/h14/index.html


The Metropolis algorithm

We wish to derive the required properties of T and A such that
P(n→∞)
i → pi so that starting from any distribution, the method

converges to the correct distribution. Note that the description
here is for a discrete probability distribution. Replacing probabilities
pi with expressions like p(xi )dxi will take all of these over to the
corresponding continuum expressions.



The Metropolis algorithm

The dynamical equation for P(n)
i can be written directly from the

description above. The probability of being in the state i at step n
is given by the probability of being in any state j at the previous
step, and making an accepted transition to i added to the
probability of being in the state i , making a transition to any state
j and rejecting the move:

P(n)
i =

∑
j

[
P(n−1)
j Tj→iAj→i + P(n−1)

i Ti→j (1− Ai→j)
]
.

Since the probability of making some transition must be 1,∑
j Ti→j = 1, and the above equation becomes

P(n)
i = P(n−1)

i +
∑
j

[
P(n−1)
j Tj→iAj→i − P

(n−1)
i Ti→jAi→j

]
.



The Metropolis algorithm

For large n we require that P(n→∞)
i = pi , the desired probability

distribution. Taking this limit, gives the balance requirement∑
j

[pjTj→iAj→i − piTi→jAi→j ] = 0 .

The balance requirement is very weak. Typically the much stronger
detailed balance requirement is enforced, that is rather than the
sum being set to zero, we set each term separately to zero and use
this to determine the acceptance probabilities. Rearranging, the
result is

Aj→i

Ai→j
=

piTi→j

pjTj→i
.



The Metropolis algorithm

The Metropolis choice is to maximize the A values, that is

Aj→i = min
(
1,

piTi→j

pjTj→i

)
.

Other choices are possible, but they all correspond to multilplying
Ai→j and Aj→i by the same constant smaller than unity.1

1The penalty function method uses just such a factor to compensate for pi
that are evaluated stochastically and are therefore noisy.



The Metropolis algorithm

Having chosen the acceptance probabilities, we have guaranteed
that if the P(n)

i has equilibrated, that is if it is equal to pi , it will
remain equilibrated. Next we need to find the circumstances for
convergence to equilibrium.
The dynamical equation can be written as

P(n)
i =

∑
j

MijP
(n−1)
j

with the matrix M given by

Mij = δij

[
1−

∑
k

Ti→kAi→k

]
+ Tj→iAj→i .

Summing over i shows that
∑

i Mij = 1, and since
∑

k Ti→k = 1,
and Ai→k ≤ 1, the elements of the matrix satisfy Mij ≥ 0. The
matrix M is therefore a stochastic matrix.



The Metropolis algorithm

The Metropolis method is simply the power method for computing
the right eigenvector of M with the largest magnitude eigenvalue.
By construction, the correct probability distribution is a right
eigenvector with eigenvalue 1. Therefore, for the Metropolis
method to converge to this result, we must show that M has only
one eigenvalue with this magnitude, and all other eigenvalues are
smaller.



Why blocking?

Statistical analysis

I Monte Carlo simulations can be treated as computer
experiments

I The results can be analysed with the same statistical tools as
we would use analysing experimental data.

I As in all experiments, we are looking for expectation values
and an estimate of how accurate they are, i.e., possible sources
for errors.

A very good article which explains blocking is H. Flyvbjerg and
H. G. Petersen, Error estimates on averages of correlated data,
Journal of Chemical Physics 91, 461-466 (1989).

http://scitation.aip.org/content/aip/journal/jcp/91/1/10.1063/1.457480


Why blocking?

Statistical analysis

I As in other experiments, Monte Carlo experiments have two
classes of errors:

I Statistical errors
I Systematical errors

I Statistical errors can be estimated using standard tools from
statistics

I Systematical errors are method specific and must be treated
differently from case to case. (In VMC a common source is the
step length or time step in importance sampling)



Statistics and blocking
The probability distribution function (PDF) is a function p(x) on
the domain which, in the discrete case, gives us the probability or
relative frequency with which these values of X occur:

p(x) = prob(X = x)

In the continuous case, the PDF does not directly depict the actual
probability. Instead we define the probability for the stochastic
variable to assume any value on an infinitesimal interval around x
to be p(x)dx . The continuous function p(x) then gives us the
density of the probability rather than the probability itself. The
probability for a stochastic variable to assume any value on a
non-infinitesimal interval [a, b] is then just the integral:

prob(a ≤ X ≤ b) =

∫ b

a
p(x)dx

Qualitatively speaking, a stochastic variable represents the values of
numbers chosen as if by chance from some specified PDF so that
the selection of a large set of these numbers reproduces this PDF.



Statistics and blocking

Also of interest to us is the cumulative probability distribution
function (CDF), P(x), which is just the probability for a stochastic
variable X to assume any value less than x :

P(x) = Prob(X ≤ x) =

∫ x

−∞
p(x ′)dx ′

The relation between a CDF and its corresponding PDF is then:

p(x) =
d

dx
P(x)



Statistics and blocking

A particularly useful class of special expectation values are the
moments. The n-th moment of the PDF p is defined as follows:

〈xn〉 ≡
∫
xnp(x) dx

The zero-th moment 〈1〉 is just the normalization condition of p.
The first moment, 〈x〉, is called the mean of p and often denoted
by the letter µ:

〈x〉 = µ ≡
∫
xp(x) dx



Statistics and blocking
A special version of the moments is the set of central moments, the
n-th central moment defined as:

〈(x − 〈x〉)n〉 ≡
∫

(x − 〈x〉)np(x) dx

The zero-th and first central moments are both trivial, equal 1 and
0, respectively. But the second central moment, known as the
variance of p, is of particular interest. For the stochastic variable
X , the variance is denoted as σ2

X or var(X ):

σ2
X = var(X ) = 〈(x − 〈x〉)2〉 =

∫
(x − 〈x〉)2p(x) dx (1)

=

∫ (
x2 − 2x〈x〉2 + 〈x〉2

)
p(x) dx (2)

= 〈x2〉 − 2〈x〉〈x〉+ 〈x〉2 (3)

= 〈x2〉 − 〈x〉2 (4)

The square root of the variance, σ =
√
〈(x − 〈x〉)2〉 is called the

standard deviation of p. It is clearly just the RMS
(root-mean-square) value of the deviation of the PDF from its mean
value, interpreted qualitatively as the spread of p around its mean.



Statistics and blocking

Another important quantity is the so called covariance, a variant of
the above defined variance. Consider again the set {Xi} of n
stochastic variables (not necessarily uncorrelated) with the
multivariate PDF P(x1, . . . , xn). The covariance of two of the
stochastic variables, Xi and Xj , is defined as follows:

cov(Xi , Xj) ≡ 〈(xi − 〈xi 〉)(xj − 〈xj〉)〉

=

∫
· · ·
∫

(xi − 〈xi 〉)(xj − 〈xj〉)P(x1, . . . , xn) dx1 . . . dxn

(5)

with
〈xi 〉 =

∫
· · ·
∫
xi P(x1, . . . , xn) dx1 . . . dxn



Statistics and blocking

If we consider the above covariance as a matrix Cij = cov(Xi , Xj),
then the diagonal elements are just the familiar variances,
Cii = cov(Xi , Xi ) = var(Xi ). It turns out that all the off-diagonal
elements are zero if the stochastic variables are uncorrelated. This
is easy to show, keeping in mind the linearity of the expectation
value. Consider the stochastic variables Xi and Xj , (i 6= j):

cov(Xi , Xj) = 〈(xi − 〈xi 〉)(xj − 〈xj〉)〉 (6)
= 〈xixj − xi 〈xj〉 − 〈xi 〉xj + 〈xi 〉〈xj〉〉 (7)
= 〈xixj〉 − 〈xi 〈xj〉〉 − 〈〈xi 〉xj〉+ 〈〈xi 〉〈xj〉〉 (8)
= 〈xixj〉 − 〈xi 〉〈xj〉 − 〈xi 〉〈xj〉+ 〈xi 〉〈xj〉 (9)
= 〈xixj〉 − 〈xi 〉〈xj〉 (10)



Statistics and blocking

If Xi and Xj are independent, we get 〈xixj〉 = 〈xi 〉〈xj〉, resulting in
cov(Xi ,Xj) = 0 (i 6= j).
Also useful for us is the covariance of linear combinations of
stochastic variables. Let {Xi} and {Yi} be two sets of stochastic
variables. Let also {ai} and {bi} be two sets of scalars. Consider
the linear combination:

U =
∑
i

aiXi V =
∑
j

bjYj

By the linearity of the expectation value

cov(U,V ) =
∑
i ,j

aibjcov(Xi ,Yj)



Statistics and blocking

Now, since the variance is just var(Xi ) = cov(Xi ,Xi ), we get the
variance of the linear combination U =

∑
i aiXi :

var(U) =
∑
i ,j

aiajcov(Xi ,Xj) (11)

And in the special case when the stochastic variables are
uncorrelated, the off-diagonal elements of the covariance are as we
know zero, resulting in:

var(U) =
∑
i

a2
i cov(Xi ,Xi ) =

∑
i

a2
i var(Xi )

var(
∑
i

aiXi ) =
∑
i

a2
i var(Xi )

which will become very useful in our study of the error in the mean
value of a set of measurements.



Statistics and blocking

A stochastic process is a process that produces sequentially a chain
of values:

{x1, x2, . . . xk , . . . }.

We will call these values our measurements and the entire set as
our measured sample. The action of measuring all the elements of a
sample we will call a stochastic experiment since, operationally, they
are often associated with results of empirical observation of some
physical or mathematical phenomena; precisely an experiment. We
assume that these values are distributed according to some PDF
pX (x), where X is just the formal symbol for the stochastic
variable whose PDF is pX (x). Instead of trying to determine the
full distribution p we are often only interested in finding the few
lowest moments, like the mean µX and the variance σX .



Statistics and blocking

In practical situations a sample is always of finite size. Let that size
be n. The expectation value of a sample, the sample mean, is then
defined as follows:

x̄n ≡
1
n

n∑
k=1

xk

The sample variance is:

var(x) ≡ 1
n

n∑
k=1

(xk − x̄n)2

its square root being the standard deviation of the sample. The
sample covariance is:

cov(x) ≡ 1
n

∑
kl

(xk − x̄n)(xl − x̄n)



Statistics and blocking

Note that the sample variance is the sample covariance without the
cross terms. In a similar manner as the covariance in Eq. (5) is a
measure of the correlation between two stochastic variables, the
above defined sample covariance is a measure of the sequential
correlation between succeeding measurements of a sample.
These quantities, being known experimental values, differ
significantly from and must not be confused with the similarly
named quantities for stochastic variables, mean µX , variance
var(X ) and covariance cov(X ,Y ).



Statistics and blocking
The law of large numbers states that as the size of our sample
grows to infinity, the sample mean approaches the true mean µX of
the chosen PDF:

lim
n→∞

x̄n = µX

The sample mean x̄n works therefore as an estimate of the true
mean µX .
What we need to find out is how good an approximation x̄n is to
µX . In any stochastic measurement, an estimated mean is of no
use to us without a measure of its error. A quantity that tells us
how well we can reproduce it in another experiment. We are
therefore interested in the PDF of the sample mean itself. Its
standard deviation will be a measure of the spread of sample
means, and we will simply call it the error of the sample mean, or
just sample error, and denote it by errX . In practice, we will only
be able to produce an estimate of the sample error since the exact
value would require the knowledge of the true PDFs behind, which
we usually do not have.



Statistics and blocking

The straight forward brute force way of estimating the sample error
is simply by producing a number of samples, and treating the mean
of each as a measurement. The standard deviation of these means
will then be an estimate of the original sample error. If we are
unable to produce more than one sample, we can split it up
sequentially into smaller ones, treating each in the same way as
above. This procedure is known as blocking and will be given more
attention shortly. At this point it is worth while exploring more
indirect methods of estimation that will help us understand some
important underlying principles of correlational effects.



Statistics and blocking

Let us first take a look at what happens to the sample error as the
size of the sample grows. In a sample, each of the measurements xi
can be associated with its own stochastic variable Xi . The
stochastic variable X n for the sample mean x̄n is then just a linear
combination, already familiar to us:

X n =
1
n

n∑
i=1

Xi

All the coefficients are just equal 1/n. The PDF of X n, denoted by
pX n

(x) is the desired PDF of the sample means.



Statistics and blocking

The probability density of obtaining a sample mean x̄n is the
product of probabilities of obtaining arbitrary values x1, x2, . . . , xn
with the constraint that the mean of the set {xi} is x̄n:

pX n
(x) =

∫
pX (x1) · · ·

∫
pX (xn) δ

(
x − x1 + x2 + · · ·+ xn

n

)
dxn · · · dx1

And in particular we are interested in its variance var(X n).



Statistics and blocking

It is generally not possible to express pX n
(x) in a closed form given

an arbitrary PDF pX and a number n. But for the limit n→∞ it
is possible to make an approximation. The very important result is
called the central limit theorem. It tells us that as n goes to
infinity, pX n

(x) approaches a Gaussian distribution whose mean and
variance equal the true mean and variance, µX and σ2

X , respectively:

lim
n→∞

pX n
(x) =

(
n

2πvar(X )

)1/2

e
− n(x−x̄n)2

2var(X ) (12)



Statistics and blocking

The desired variance var(X n), i.e. the sample error squared err2X , is
given by:

err2X = var(X n) =
1
n2

∑
ij

cov(Xi ,Xj) (13)

We see now that in order to calculate the exact error of the sample
with the above expression, we would need the true means µXi

of
the stochastic variables Xi . To calculate these requires that we
know the true multivariate PDF of all the Xi . But this PDF is
unknown to us, we have only got the measurements of one sample.
The best we can do is to let the sample itself be an estimate of the
PDF of each of the Xi , estimating all properties of Xi through the
measurements of the sample.



Statistics and blocking

Our estimate of µXi
is then the sample mean x̄ itself, in accordance

with the the central limit theorem:

µXi
= 〈xi 〉 ≈

1
n

n∑
k=1

xk = x̄

Using x̄ in place of µXi
we can give an estimate of the covariance in

Eq. (13)

cov(Xi ,Xj) = 〈(xi − 〈xi 〉)(xj − 〈xj〉)〉 ≈ 〈(xi − x̄)(xj − x̄)〉,

resulting in

1
n

n∑
l

(
1
n

n∑
k

(xk − x̄n)(xl − x̄n)

)
=

1
n

1
n

∑
kl

(xk−x̄n)(xl−x̄n) =
1
n
cov(x)



Statistics and blocking
By the same procedure we can use the sample variance as an
estimate of the variance of any of the stochastic variables Xi

var(Xi ) = 〈xi − 〈xi 〉〉 ≈ 〈xi − x̄n〉,

which is approximated as

var(Xi ) ≈
1
n

n∑
k=1

(xk − x̄n) = var(x) (14)

Now we can calculate an estimate of the error errX of the sample
mean x̄n:

err2X =
1
n2

∑
ij

cov(Xi ,Xj)

≈ 1
n2

∑
ij

1
n
cov(x) =

1
n2 n

2 1
n
cov(x)

=
1
n
cov(x) (15)

which is nothing but the sample covariance divided by the number
of measurements in the sample.



Statistics and blocking

In the special case that the measurements of the sample are
uncorrelated (equivalently the stochastic variables Xi are
uncorrelated) we have that the off-diagonal elements of the
covariance are zero. This gives the following estimate of the sample
error:

err2X =
1
n2

∑
ij

cov(Xi ,Xj) =
1
n2

∑
i

var(Xi ),

resulting in

err2X ≈
1
n2

∑
i

var(x) =
1
n
var(x) (16)

where in the second step we have used Eq. (14). The error of the
sample is then just its standard deviation divided by the square root
of the number of measurements the sample contains. This is a very
useful formula which is easy to compute. It acts as a first
approximation to the error, but in numerical experiments, we
cannot overlook the always present correlations.



Statistics and blocking

For computational purposes one usually splits up the estimate of
err2X , given by Eq. (15), into two parts

err2X =
1
n
var(x) +

1
n

(cov(x)− var(x)),

which equals

1
n2

n∑
k=1

(xk − x̄n)2 +
2
n2

∑
k<l

(xk − x̄n)(xl − x̄n) (17)

The first term is the same as the error in the uncorrelated case,
Eq. (16). This means that the second term accounts for the error
correction due to correlation between the measurements. For
uncorrelated measurements this second term is zero.



Statistics and blocking

Computationally the uncorrelated first term is much easier to treat
efficiently than the second.

var(x) =
1
n

n∑
k=1

(xk − x̄n)2 =

(
1
n

n∑
k=1

x2
k

)
− x̄2

n

We just accumulate separately the values x2 and x for every
measurement x we receive. The correlation term, though, has to be
calculated at the end of the experiment since we need all the
measurements to calculate the cross terms. Therefore, all
measurements have to be stored throughout the experiment.



Statistics and blocking
Let us analyze the problem by splitting up the correlation term into
partial sums of the form:

fd =
1

n − d

n−d∑
k=1

(xk − x̄n)(xk+d − x̄n)

The correlation term of the error can now be rewritten in terms of
fd

2
n

∑
k<l

(xk − x̄n)(xl − x̄n) = 2
n−1∑
d=1

fd

The value of fd reflects the correlation between measurements
separated by the distance d in the sample samples. Notice that for
d = 0, f is just the sample variance, var(x). If we divide fd by
var(x), we arrive at the so called autocorrelation function

κd =
fd

var(x)

which gives us a useful measure of the correlation pair correlation
starting always at 1 for d = 0.



Statistics and blocking
The sample error (see eq. (17)) can now be written in terms of the
autocorrelation function:

err2X =
1
n
var(x) +

2
n
· var(x)

n−1∑
d=1

fd
var(x)

=

(
1 + 2

n−1∑
d=1

κd

)
1
n
var(x)

=
τ

n
· var(x) (18)

and we see that errX can be expressed in terms the uncorrelated
sample variance times a correction factor τ which accounts for the
correlation between measurements. We call this correction factor
the autocorrelation time:

τ = 1 + 2
n−1∑
d=1

κd (19)



Statistics and blocking

For a correlation free experiment, τ equals 1. From the point of
view of eq. (18) we can interpret a sequential correlation as an
effective reduction of the number of measurements by a factor τ .
The effective number of measurements becomes:

neff =
n

τ

To neglect the autocorrelation time τ will always cause our simple
uncorrelated estimate of err2X ≈ var(x)/n to be less than the true
sample error. The estimate of the error will be too good. On the
other hand, the calculation of the full autocorrelation time poses an
efficiency problem if the set of measurements is very large.



Can we understand this? Time Auto-correlation Function
The so-called time-displacement autocorrelation φ(t) for a quantity
M is given by

φ(t) =

∫
dt ′
[
M(t ′)− 〈M〉

] [
M(t ′ + t)− 〈M〉

]
,

which can be rewritten as

φ(t) =

∫
dt ′
[
M(t ′)M(t ′ + t)− 〈M〉2

]
,

where 〈M〉 is the average value andM(t) its instantaneous value.
We can discretize this function as follows, where we used our set of
computed valuesM(t) for a set of discretized times (our Monte
Carlo cycles corresponding to moving all electrons?)

φ(t) =
1

tmax − t

tmax−t∑
t′=0

M(t ′)M(t ′+t)− 1
tmax − t

tmax−t∑
t′=0

M(t ′)× 1
tmax − t

tmax−t∑
t′=0

M(t ′+t).



Time Auto-correlation Function

One should be careful with times close to tmax, the upper limit of
the sums becomes small and we end up integrating over a rather
small time interval. This means that the statistical error in φ(t) due
to the random nature of the fluctuations inM(t) can become large.
One should therefore choose t � tmax.
Note that the variableM can be any expectation values of interest.
The time-correlation function gives a measure of the correlation
between the various values of the variable at a time t ′ and a time
t ′ + t. If we multiply the values ofM at these two different times,
we will get a positive contribution if they are fluctuating in the
same direction, or a negative value if they fluctuate in the opposite
direction. If we then integrate over time, or use the discretized
version of, the time correlation function φ(t) should take a
non-zero value if the fluctuations are correlated, else it should
gradually go to zero. For times a long way apart the different
values ofM are most likely uncorrelated and φ(t) should be zero.



Time Auto-correlation Function
We can derive the correlation time by observing that our Metropolis
algorithm is based on a random walk in the space of all possible
spin configurations. Our probability distribution function ŵ(t) after
a given number of time steps t could be written as

ŵ(t) = Ŵtŵ(0),

with ŵ(0) the distribution at t = 0 and Ŵ representing the
transition probability matrix. We can always expand ŵ(0) in terms
of the right eigenvectors of v̂ of Ŵ as

ŵ(0) =
∑
i

αi v̂i ,

resulting in

ŵ(t) = Ŵtŵ(0) = Ŵt
∑
i

αi v̂i =
∑
i

λti αi v̂i ,

with λi the i th eigenvalue corresponding to the eigenvector v̂i .



Time Auto-correlation Function

If we assume that λ0 is the largest eigenvector we see that in the
limit t →∞, ŵ(t) becomes proportional to the corresponding
eigenvector v̂0. This is our steady state or final distribution.
We can relate this property to an observable like the mean energy.
With the probabilty ŵ(t) (which in our case is the squared trial
wave function) we can write the expectation values as

〈M(t)〉 =
∑
µ

ŵ(t)µMµ,

or as the scalar of a vector product

〈M(t)〉 = ŵ(t)m,

with m being the vector whose elements are the values ofMµ in
its various microstates µ.



Time Auto-correlation Function
We rewrite this relation as

〈M(t)〉 = ŵ(t)m =
∑
i

λti αi v̂imi .

If we define mi = v̂imi as the expectation value ofM in the i th

eigenstate we can rewrite the last equation as

〈M(t)〉 =
∑
i

λti αimi .

Since we have that in the limit t →∞ the mean value is dominated
by the the largest eigenvalue λ0, we can rewrite the last equation as

〈M(t)〉 = 〈M(∞)〉+
∑
i 6=0

λti αimi .

We define the quantity

τi = − 1
logλi

,

and rewrite the last expectation value as

〈M(t)〉 = 〈M(∞)〉+
∑
i 6=0

αimie
−t/τi .



Time Auto-correlation Function
The quantities τi are the correlation times for the system. They
control also the auto-correlation function discussed above. The
longest correlation time is obviously given by the second largest
eigenvalue τ1, which normally defines the correlation time discussed
above. For large times, this is the only correlation time that
survives. If higher eigenvalues of the transition matrix are well
separated from λ1 and we simulate long enough, τ1 may well define
the correlation time. In other cases we may not be able to extract a
reliable result for τ1. Coming back to the time correlation function
φ(t) we can present a more general definition in terms of the mean
magnetizations 〈M(t)〉. Recalling that the mean value is equal to
〈M(∞)〉 we arrive at the expectation values

φ(t) = 〈M(0)−M(∞)〉〈M(t)−M(∞)〉,

resulting in
φ(t) =

∑
i ,j 6=0

miαimjαje
−t/τi ,

which is appropriate for all times.



Correlation Time
If the correlation function decays exponentially

φ(t) ∼ exp (−t/τ)

then the exponential correlation time can be computed as the
average

τexp = −〈 t

log |φ(t)
φ(0) |
〉.

If the decay is exponential, then∫ ∞
0

dtφ(t) =

∫ ∞
0

dtφ(0) exp (−t/τ) = τφ(0),

which suggests another measure of correlation

τint =
∑
k

φ(k)

φ(0)
,

called the integrated correlation time.



What is blocking?

Blocking

I Say that we have a set of samples from a Monte Carlo
experiment

I Assuming (wrongly) that our samples are uncorrelated our
best estimate of the standard deviation of the mean 〈M〉 is
given by

σ =

√
1
n

(〈M2〉 − 〈M〉2)

I If the samples are correlated we can rewrite our results to show
that

σ =

√
1 + 2τ/∆t

n
(〈M2〉 − 〈M〉2)

where τ is the correlation time (the time between a sample and the
next uncorrelated sample) and ∆t is time between each sample



What is blocking?

Blocking

I If ∆t � τ our first estimate of σ still holds
I Much more common that ∆t < τ

I In the method of data blocking we divide the sequence of
samples into blocks

I We then take the mean 〈Mi 〉 of block i = 1 . . . nblocks to
calculate the total mean and variance

I The size of each block must be so large that sample j of block
i is not correlated with sample j of block i + 1

I The correlation time τ would be a good choice



What is blocking?

Blocking

I Problem: We don’t know τ or it is too expensive to compute
I Solution: Make a plot of std. dev. as a function of blocksize
I The estimate of std. dev. of correlated data is too low → the

error will increase with increasing block size until the blocks
are uncorrelated, where we reach a plateau

I When the std. dev. stops increasing the blocks are
uncorrelated



Implementation

I Do a Monte Carlo simulation, storing all samples to file
I Do the statistical analysis on this file, independently of your

Monte Carlo program
I Read the file into an array
I Loop over various block sizes
I For each block size nb, loop over the array in steps of nb

taking the mean of elements inb, . . . , (i + 1)nb
I Take the mean and variance of the resulting array
I Write the results for each block size to file for later analysis



Importance sampling

We need to replace the brute force Metropolis algorithm with a
walk in coordinate space biased by the trial wave function. This
approach is based on the Fokker-Planck equation and the Langevin
equation for generating a trajectory in coordinate space. The link
between the Fokker-Planck equation and the Langevin equations
are explained, only partly, in the slides below. An excellent reference
on topics like Brownian motion, Markov chains, the Fokker-Planck
equation and the Langevin equation is the text by Van Kampen
Here we will focus first on the implementation part first.
For a diffusion process characterized by a time-dependent
probability density P(x , t) in one dimension the Fokker-Planck
equation reads (for one particle /walker)

∂P

∂t
= D

∂

∂x

(
∂

∂x
− F

)
P(x , t),

where F is a drift term and D is the diffusion coefficient.

http://www.elsevier.com/books/stochastic-processes-in-physics-and-chemistry/van-kampen/978-0-444-52965-7


Importance sampling

The new positions in coordinate space are given as the solutions of
the Langevin equation using Euler’s method, namely, we go from
the Langevin equation

∂x(t)

∂t
= DF (x(t)) + η,

with η a random variable, yielding a new position

y = x + DF (x)∆t + ξ
√

∆t,

where ξ is gaussian random variable and ∆t is a chosen time step.
The quantity D is, in atomic units, equal to 1/2 and comes from
the factor 1/2 in the kinetic energy operator. Note that ∆t is to be
viewed as a parameter. Values of ∆t ∈ [0.001, 0.01] yield in general
rather stable values of the ground state energy.



Importance sampling

The process of isotropic diffusion characterized by a
time-dependent probability density P(x, t) obeys (as an
approximation) the so-called Fokker-Planck equation

∂P

∂t
=
∑
i

D
∂

∂xi

(
∂

∂xi
− Fi

)
P(x, t),

where Fi is the i th component of the drift term (drift velocity)
caused by an external potential, and D is the diffusion coefficient.
The convergence to a stationary probability density can be obtained
by setting the left hand side to zero. The resulting equation will be
satisfied if and only if all the terms of the sum are equal zero,

∂2P

∂xi
2 = P

∂

∂xi
Fi + Fi

∂

∂xi
P.



Importance sampling

The drift vector should be of the form F = g(x)∂P∂x . Then,

∂2P

∂xi
2 = P

∂g

∂P

(
∂P

∂xi

)2

+ Pg
∂2P

∂x2
i

+ g

(
∂P

∂xi

)2

.

The condition of stationary density means that the left hand side
equals zero. In other words, the terms containing first and second
derivatives have to cancel each other. It is possible only if g = 1

P ,
which yields

F = 2
1

ΨT
∇ΨT ,

which is known as the so-called quantum force. This term is
responsible for pushing the walker towards regions of configuration
space where the trial wave function is large, increasing the efficiency
of the simulation in contrast to the Metropolis algorithm where the
walker has the same probability of moving in every direction.



Importance sampling

The Fokker-Planck equation yields a (the solution to the equation)
transition probability given by the Green’s function

G (y , x ,∆t) =
1

(4πD∆t)3N/2 exp
(
−(y − x − D∆tF (x))2/4D∆t

)
which in turn means that our brute force Metropolis algorithm

A(y , x) = min(1, q(y , x))),

with q(y , x) = |ΨT (y)|2/|ΨT (x)|2 is now replaced by the
Metropolis-Hastings algorithm as well as Hasting’s article,

q(y , x) =
G (x , y ,∆t)|ΨT (y)|2

G (y , x ,∆t)|ΨT (x)|2

http://scitation.aip.org/content/aip/journal/jcp/21/6/10.1063/1.1699114
http://biomet.oxfordjournals.org/content/57/1/97.abstract


Importance sampling, program elements
The full code is this link. Here we include only the parts pertaining
to the computation of the quantum force and the Metropolis
update. The program is a modfication of our previous c++
program discussed previously. Here we display only the part from
the vmcsolver.cpp file. Note the usage of the function
GaussianDeviate.
void VMCSolver::runMonteCarloIntegration()
{

rOld = zeros<mat>(nParticles, nDimensions);
rNew = zeros<mat>(nParticles, nDimensions);
QForceOld = zeros<mat>(nParticles, nDimensions);
QForceNew = zeros<mat>(nParticles, nDimensions);

double waveFunctionOld = 0;
double waveFunctionNew = 0;

double energySum = 0;
double energySquaredSum = 0;

double deltaE;

// initial trial positions
for(int i = 0; i < nParticles; i++) {

for(int j = 0; j < nDimensions; j++) {
rOld(i,j) = GaussianDeviate(&idum)*sqrt(timestep);

}
}
rNew = rOld;

https://github.com/CompPhysics/ComputationalPhysics2/tree/gh-pages/doc/pub/vmc/programs/c%2B%2B


Importance sampling, program elements

for(int cycle = 0; cycle < nCycles; cycle++) {

// Store the current value of the wave function
waveFunctionOld = waveFunction(rOld);
QuantumForce(rOld, QForceOld); QForceOld = QForceOld*h/waveFunctionOld;
// New position to test
for(int i = 0; i < nParticles; i++) {

for(int j = 0; j < nDimensions; j++) {
rNew(i,j) = rOld(i,j) + GaussianDeviate(&idum)*sqrt(timestep)+QForceOld(i,j)*timestep*D;

}
// for the other particles we need to set the position to the old position since
// we move only one particle at the time
for (int k = 0; k < nParticles; k++) {

if ( k != i) {
for (int j=0; j < nDimensions; j++) {

rNew(k,j) = rOld(k,j);
}

}
}



Importance sampling, program elements
// loop over Monte Carlo cycles

// Recalculate the value of the wave function and the quantum force
waveFunctionNew = waveFunction(rNew);
QuantumForce(rNew,QForceNew) = QForceNew*h/waveFunctionNew;
// we compute the log of the ratio of the greens functions to be used in the
// Metropolis-Hastings algorithm
GreensFunction = 0.0;
for (int j=0; j < nDimensions; j++) {

GreensFunction += 0.5*(QForceOld(i,j)+QForceNew(i,j))*
(D*timestep*0.5*(QForceOld(i,j)-QForceNew(i,j))-rNew(i,j)+rOld(i,j));

}
GreensFunction = exp(GreensFunction);

// The Metropolis test is performed by moving one particle at the time
if(ran2(&idum) <= GreensFunction*(waveFunctionNew*waveFunctionNew) / (waveFunctionOld*waveFunctionOld)) {

for(int j = 0; j < nDimensions; j++) {
rOld(i,j) = rNew(i,j);
QForceOld(i,j) = QForceNew(i,j);
waveFunctionOld = waveFunctionNew;

}
} else {

for(int j = 0; j < nDimensions; j++) {
rNew(i,j) = rOld(i,j);
QForceNew(i,j) = QForceOld(i,j);

}
}



Importance sampling, program elements
Note numerical derivatives
double VMCSolver::QuantumForce(const mat &r, mat &QForce)
{

mat rPlus = zeros<mat>(nParticles, nDimensions);
mat rMinus = zeros<mat>(nParticles, nDimensions);
rPlus = rMinus = r;
double waveFunctionMinus = 0;
double waveFunctionPlus = 0;
double waveFunctionCurrent = waveFunction(r);

// Kinetic energy

double kineticEnergy = 0;
for(int i = 0; i < nParticles; i++) {

for(int j = 0; j < nDimensions; j++) {
rPlus(i,j) += h;
rMinus(i,j) -= h;
waveFunctionMinus = waveFunction(rMinus);
waveFunctionPlus = waveFunction(rPlus);
QForce(i,j) = (waveFunctionPlus-waveFunctionMinus);
rPlus(i,j) = r(i,j);
rMinus(i,j) = r(i,j);

}
}

}



Importance sampling, program elements
The general derivative formula of the Jastrow factor is (the
subscript C stands for Correlation)

1
ΨC

∂ΨC

∂xk
=

k−1∑
i=1

∂gik
∂xk

+
N∑

i=k+1

∂gki
∂xk

However, with our

ΨC =
∏
i<j

g(rij) = exp

∑
i<j

arij
1 + βrij

,
the gradient needed for the quantum force and local energy is easy
to compute. We get for particle k

∇kΨC

ΨC
=
∑
j 6=k

rkj
rkj

a

(1 + βrkj)2 ,

which is rather easy to code. Remember to sum over all particles
when you compute the local energy.



Importance sampling, program elements

In the Metropolis/Hasting algorithm, the acceptance ratio
determines the probability for a particle to be accepted at a new
position. The ratio of the trial wave functions evaluated at the new
and current positions is given by (D for determinant part)

R ≡
Ψnew

T

Ψold
T

=
Ψnew

D

Ψold
D

Ψnew
C

Ψold
C

Here ΨD is our Slater determinant while ΨC is our correlation
function, or Jastrow factor. We need to optimize the ∇ΨT/ΨT

ratio and the second derivative as well, that is the ∇2ΨT/ΨT ratio.
The first is needed when we compute the so-called quantum force
in importance sampling. The second is needed when we compute
the kinetic energy term of the local energy.

∇Ψ

Ψ
=
∇(ΨD ΨC )

ΨD ΨC
=

ΨC∇ΨD + ΨD∇ΨC

ΨDΨC
=
∇ΨD

ΨD
+
∇ΨC

ΨC



Importance sampling

The expectation value of the kinetic energy expressed in atomic
units for electron i is

〈K̂i 〉 = −1
2
〈Ψ|∇2

i |Ψ〉
〈Ψ|Ψ〉

,

K̂i = −1
2
∇2

i Ψ

Ψ
.



Importance sampling

The second derivative which enters the definition of the local
energy is

∇2Ψ

Ψ
=
∇2ΨD

ΨD
+
∇2ΨC

ΨC
+ 2
∇ΨD

ΨD
· ∇ΨC

ΨC

We discuss here how to calculate these quantities in an optimal way,



Importance sampling

We have defined the correlated function as

ΨC =
∏
i<j

g(rij) =
N∏
i<j

g(rij) =
N∏
i=1

N∏
j=i+1

g(rij),

with rij = |ri − rj | =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2 in three
dimensions or rij = |ri − rj | =

√
(xi − xj)2 + (yi − yj)2 if we work

with two-dimensional systems.
In our particular case we have

ΨC =
∏
i<j

g(rij) = exp

∑
i<j

f (rij)

 = exp

∑
i<j

arij
1 + βrij

,



Importance sampling

The total number of different relative distances rij is N(N − 1)/2.
In a matrix storage format, the relative distances form a strictly
upper triangular matrix

r ≡



0 r1,2 r1,3 · · · r1,N
... 0 r2,3 · · · r2,N
...

... 0
. . .

...
...

...
...

. . . rN−1,N
0 0 0 · · · 0


.

This applies to g = g(rij) as well.
In our algorithm we will move one particle at the time, say the
kth-particle. This sampling will be seen to be particularly efficient
when we are going to compute a Slater determinant.



Importance sampling

We have that the ratio between Jastrow factors RC is given by

RC =
Ψnew

C

Ψcur
C

=
k−1∏
i=1

gnewik

g curik

N∏
i=k+1

gnewki

g curki

.

For the Pade-Jastrow form

RC =
Ψnew

C

Ψcur
C

=
expUnew

expUcur
= exp∆U,

where

∆U =
k−1∑
i=1

(
f newik − f curik

)
+

N∑
i=k+1

(
f newki − f curki

)



Importance sampling

One needs to develop a special algorithm that runs only through the
elements of the upper triangular matrix g and have k as an index.
The expression to be derived in the following is of interest when
computing the quantum force and the kinetic energy. It has the
form

∇iΨC

ΨC
=

1
ΨC

∂ΨC

∂xi
,

for all dimensions and with i running over all particles.



Importance sampling

For the first derivative only N − 1 terms survive the ratio because
the g -terms that are not differentiated cancel with their
corresponding ones in the denominator. Then,

1
ΨC

∂ΨC

∂xk
=

k−1∑
i=1

1
gik

∂gik
∂xk

+
N∑

i=k+1

1
gki

∂gki
∂xk

.

An equivalent equation is obtained for the exponential form after
replacing gij by exp(fij), yielding:

1
ΨC

∂ΨC

∂xk
=

k−1∑
i=1

∂gik
∂xk

+
N∑

i=k+1

∂gki
∂xk

,

with both expressions scaling as O(N).



Importance sampling

Using the identity
∂

∂xi
gij = − ∂

∂xj
gij ,

we get expressions where all the derivatives acting on the particle
are represented by the second index of g :

1
ΨC

∂ΨC

∂xk
=

k−1∑
i=1

1
gik

∂gik
∂xk
−

N∑
i=k+1

1
gki

∂gki
∂xi

,

and for the exponential case:

1
ΨC

∂ΨC

∂xk
=

k−1∑
i=1

∂gik
∂xk
−

N∑
i=k+1

∂gki
∂xi

.



Importance sampling

For correlation forms depending only on the scalar distances rij we
can use the chain rule. Noting that

∂gij
∂xj

=
∂gij
∂rij

∂rij
∂xj

=
xj − xi
rij

∂gij
∂rij

,

we arrive at

1
ΨC

∂ΨC

∂xk
=

k−1∑
i=1

1
gik

rik
rik

∂gik
∂rik

−
N∑

i=k+1

1
gki

rki
rki

∂gki
∂rki

.



Importance sampling

Note that for the Pade-Jastrow form we can set
gij ≡ g(rij) = ef (rij ) = efij and

∂gij
∂rij

= gij
∂fij
∂rij

.

Therefore,

1
ΨC

∂ΨC

∂xk
=

k−1∑
i=1

rik
rik

∂fik
∂rik
−

N∑
i=k+1

rki
rki

∂fki
∂rki

,

where

rij = |rj − ri | = (xj − xi )e1 + (yj − yi )e2 + (zj − zi )e3

is the relative distance.



Importance sampling

When the correlation function is the linear Pade-Jastrow we have

fij =
arij

(1 + βrij)
,

which yields the closed form expression

∂fij
∂rij

=
a

(1 + βrij)2 .



Importance sampling

The second derivative of the Jastrow factor divided by the Jastrow
factor (the way it enters the kinetic energy) is

[
∇2ΨC

ΨC

]
x

= 2
N∑

k=1

k−1∑
i=1

∂2gik
∂x2

k

+
N∑

k=1

(
k−1∑
i=1

∂gik
∂xk
−

N∑
i=k+1

∂gki
∂xi

)2



Importance sampling

But we have a simple form for the function, namely

ΨC =
∏
i<j

exp f (rij) = exp

∑
i<j

arij
1 + βrij

,
and it is easy to see that for particle k we have

∇2
kΨC

ΨC
=
∑
ij 6=k

(rk − ri )(rk − rj)
rki rkj

f ′(rki )f
′(rkj)+

∑
j 6=k

(
f ′′(rkj) +

2
rkj

f ′(rkj)

)



Importance sampling

Using
f (rij) =

arij
1 + βrij

,

and g ′(rkj) = dg(rkj)/drkj and g ′′(rkj) = d2g(rkj)/dr
2
kj we find that

for particle k we have

∇2
kΨC

ΨC
=
∑
ij 6=k

(rk − ri )(rk − rj)
rki rkj

a

(1 + βrki )2
a

(1 + βrkj)2 +
∑
j 6=k

(
2a

rkj(1 + βrkj)2 −
2aβ

(1 + βrkj)3

)



Importance sampling

For the correlation part

ΨC =
∏
i<j

g(rij) = exp

∑
i<j

arij
1 + βrij

,
we need to take into account whether electrons have equal or
opposite spins since we have to obey the electron-electron cusp
condition as well. When the electrons have equal spins

a = 1/4,

while for opposite spins (like the ground state in Helium)

a = 1/2



Importance sampling, Fokker-Planck and Langevin equations

A stochastic process is simply a function of two variables, one is the
time, the other is a stochastic variable X , defined by specifying

I the set {x} of possible values for X ;
I the probability distribution, wX (x), over this set, or briefly

w(x)

The set of values {x} for X may be discrete, or continuous. If the
set of values is continuous, then wX (x) is a probability density so
that wX (x)dx is the probability that one finds the stochastic
variable X to have values in the range [x , x + dx ] .



Importance sampling, Fokker-Planck and Langevin equations

An arbitrary number of other stochastic variables may be derived
from X . For example, any Y given by a mapping of X , is also a
stochastic variable. The mapping may also be time-dependent, that
is, the mapping depends on an additional variable t

YX (t) = f (X , t).

The quantity YX (t) is called a random function, or, since t often is
time, a stochastic process. A stochastic process is a function of two
variables, one is the time, the other is a stochastic variable X . Let
x be one of the possible values of X then

y(t) = f (x , t),

is a function of t, called a sample function or realization of the
process. In physics one considers the stochastic process to be an
ensemble of such sample functions.



Importance sampling, Fokker-Planck and Langevin equations

For many physical systems initial distributions of a stochastic
variable y tend to equilibrium distributions: w(y , t)→ w0(y) as
t →∞. In equilibrium detailed balance constrains the transition
rates

W (y → y ′)w(y) = W (y ′ → y)w0(y),

where W (y ′ → y) is the probability, per unit time, that the system
changes from a state |y〉 , characterized by the value y for the
stochastic variable Y , to a state |y ′〉.
Note that for a system in equilibrium the transition rate
W (y ′ → y) and the reverse W (y → y ′) may be very different.



Importance sampling, Fokker-Planck and Langevin equations

Consider, for instance, a simple system that has only two energy
levels ε0 = 0 and ε1 = ∆E .
For a system governed by the Boltzmann distribution we find (the
partition function has been taken out)

W (0→ 1) exp−(ε0/kT ) = W (1→ 0) exp−(ε1/kT )

We get then
W (1→ 0)

W (0→ 1)
= exp−(∆E/kT ),

which goes to zero when T tends to zero.



Importance sampling, Fokker-Planck and Langevin equations

If we assume a discrete set of events, our initial probability
distribution function can be given by

wi (0) = δi ,0,

and its time-development after a given time step ∆t = ε is

wi (t) =
∑
j

W (j → i)wj(t = 0).

The continuous analog to wi (0) is

w(x)→ δ(x),

where we now have generalized the one-dimensional position x to a
generic-dimensional vector x. The Kroenecker δ function is
replaced by the δ distribution function δ(x) at t = 0.



Importance sampling, Fokker-Planck and Langevin equations

The transition from a state j to a state i is now replaced by a
transition to a state with position y from a state with position x.
The discrete sum of transition probabilities can then be replaced by
an integral and we obtain the new distribution at a time t + ∆t as

w(y, t + ∆t) =

∫
W (y, t + ∆t|x, t)w(x, t)dx,

and after m time steps we have

w(y, t + m∆t) =

∫
W (y, t + m∆t|x, t)w(x, t)dx.

When equilibrium is reached we have

w(y) =

∫
W (y|x, t)w(x)dx,

that is no time-dependence. Note our change of notation for W



Importance sampling, Fokker-Planck and Langevin equations

We can solve the equation for w(y, t) by making a Fourier
transform to momentum space. The PDF w(x, t) is related to its
Fourier transform w̃(k, t) through

w(x, t) =

∫ ∞
−∞

dk exp (ikx)w̃(k, t),

and using the definition of the δ-function

δ(x) =
1
2π

∫ ∞
−∞

dk exp (ikx),

we see that
w̃(k, 0) = 1/2π.



Importance sampling, Fokker-Planck and Langevin equations

We can then use the Fourier-transformed diffusion equation

∂w̃(k, t)

∂t
= −Dk2w̃(k, t),

with the obvious solution

w̃(k, t) = w̃(k, 0) exp
[
−(Dk2t)

)
=

1
2π

exp
[
−(Dk2t)

]
.



Importance sampling, Fokker-Planck and Langevin equations

With the Fourier transform we obtain

w(x, t) =

∫ ∞
−∞

dk exp [ikx]
1
2π

exp
[
−(Dk2t)

]
=

1√
4πDt

exp
[
−(x2/4Dt)

]
,

with the normalization condition∫ ∞
−∞

w(x, t)dx = 1.



Importance sampling, Fokker-Planck and Langevin equations

The solution represents the probability of finding our random walker
at position x at time t if the initial distribution was placed at x = 0
at t = 0.
There is another interesting feature worth observing. The discrete
transition probability W itself is given by a binomial distribution.
The results from the central limit theorem state that transition
probability in the limit n→∞ converges to the normal distribution.
It is then possible to show that

W (il−jl , nε)→W (y, t+∆t|x, t) =
1√

4πD∆t
exp
[
−((y − x)2/4D∆t)

]
,

and that it satisfies the normalization condition and is itself a
solution to the diffusion equation.



Importance sampling, Fokker-Planck and Langevin equations

Let us now assume that we have three PDFs for times t0 < t ′ < t,
that is w(x0, t0), w(x′, t ′) and w(x, t). We have then

w(x, t) =

∫ ∞
−∞

W (x.t|x′.t ′)w(x′, t ′)dx′,

and
w(x, t) =

∫ ∞
−∞

W (x.t|x0.t0)w(x0, t0)dx0,

and
w(x′, t ′) =

∫ ∞
−∞

W (x′.t ′|x0, t0)w(x0, t0)dx0.



Importance sampling, Fokker-Planck and Langevin equations

We can combine these equations and arrive at the famous
Einstein-Smoluchenski-Kolmogorov-Chapman (ESKC) relation

W (xt|x0t0) =

∫ ∞
−∞

W (x, t|x′, t ′)W (x′, t ′|x0, t0)dx′.

We can replace the spatial dependence with a dependence upon say
the velocity (or momentum), that is we have

W (v, t|v0, t0) =

∫ ∞
−∞

W (v, t|v′, t ′)W (v′, t ′|v0, t0)dx′.



Importance sampling, Fokker-Planck and Langevin equations

We will now derive the Fokker-Planck equation. We start from the
ESKC equation

W (x, t|x0, t0) =

∫ ∞
−∞

W (x, t|x′, t ′)W (x′, t ′|x0, t0)dx′.

Define s = t ′ − t0, τ = t − t ′ and t − t0 = s + τ . We have then

W (x, s + τ |x0) =

∫ ∞
−∞

W (x, τ |x′)W (x′, s|x0)dx′.



Importance sampling, Fokker-Planck and Langevin equations

Assume now that τ is very small so that we can make an expansion
in terms of a small step xi , with x′ = x− ξ, that is

W (x, s|x0)+
∂W

∂s
τ+O(τ2) =

∫ ∞
−∞

W (x, τ |x−ξ)W (x−ξ, s|x0)dx′.

We assume that W (x, τ |x− ξ) takes non-negligible values only
when ξ is small. This is just another way of stating the Master
equation!!



Importance sampling, Fokker-Planck and Langevin equations

We say thus that x changes only by a small amount in the time
interval τ . This means that we can make a Taylor expansion in
terms of ξ, that is we expand

W (x, τ |x−ξ)W (x−ξ, s|x0) =
∞∑
n=0

(−ξ)n

n!

∂n

∂xn
[W (x + ξ, τ |x)W (x, s|x0)] .



Importance sampling, Fokker-Planck and Langevin equations

We can then rewrite the ESKC equation as

∂W

∂s
τ = −W (x, s|x0)+

∞∑
n=0

(−ξ)n

n!

∂n

∂xn

[
W (x, s|x0)

∫ ∞
−∞

ξnW (x + ξ, τ |x)dξ

]
.

We have neglected higher powers of τ and have used that for n = 0
we get simply W (x, s|x0) due to normalization.



Importance sampling, Fokker-Planck and Langevin equations

We say thus that x changes only by a small amount in the time
interval τ . This means that we can make a Taylor expansion in
terms of ξ, that is we expand

W (x, τ |x−ξ)W (x−ξ, s|x0) =
∞∑
n=0

(−ξ)n

n!

∂n

∂xn
[W (x + ξ, τ |x)W (x, s|x0)] .



Importance sampling, Fokker-Planck and Langevin equations

We can then rewrite the ESKC equation as

∂W (x, s|x0)

∂s
τ = −W (x, s|x0)+

∞∑
n=0

(−ξ)n

n!

∂n

∂xn

[
W (x, s|x0)

∫ ∞
−∞

ξnW (x + ξ, τ |x)dξ

]
.

We have neglected higher powers of τ and have used that for n = 0
we get simply W (x, s|x0) due to normalization.



Importance sampling, Fokker-Planck and Langevin equations

We simplify the above by introducing the moments

Mn =
1
τ

∫ ∞
−∞

ξnW (x + ξ, τ |x)dξ =
〈[∆x(τ)]n〉

τ
,

resulting in

∂W (x, s|x0)

∂s
=
∞∑
n=1

(−ξ)n

n!

∂n

∂xn
[W (x, s|x0)Mn] .



Importance sampling, Fokker-Planck and Langevin equations

When τ → 0 we assume that 〈[∆x(τ)]n〉 → 0 more rapidly than τ
itself if n > 2. When τ is much larger than the standard correlation
time of system then Mn for n > 2 can normally be neglected. This
means that fluctuations become negligible at large time scales.
If we neglect such terms we can rewrite the ESKC equation as

∂W (x, s|x0)

∂s
= −∂M1W (x, s|x0)

∂x
+

1
2
∂2M2W (x, s|x0)

∂x2 .



Importance sampling, Fokker-Planck and Langevin equations

In a more compact form we have

∂W

∂s
= −∂M1W

∂x
+

1
2
∂2M2W

∂x2 ,

which is the Fokker-Planck equation! It is trivial to replace position
with velocity (momentum).



Importance sampling, Fokker-Planck and Langevin equations

Langevin equation
Consider a particle suspended in a liquid. On its path through the
liquid it will continuously collide with the liquid molecules. Because
on average the particle will collide more often on the front side
than on the back side, it will experience a systematic force
proportional with its velocity, and directed opposite to its velocity.
Besides this systematic force the particle will experience a
stochastic force F(t). The equations of motion are

I dr
dt = v and

I dv
dt = −ξv + F.



Importance sampling, Fokker-Planck and Langevin equations

Langevin equation
From hydrodynamics we know that the friction constant ξ is given
by

ξ = 6πηa/m

where η is the viscosity of the solvent and a is the radius of the
particle .
Solving the second equation in the previous slide we get

v(t) = v0e
−ξt +

∫ t

0
dτe−ξ(t−τ)F(τ).



Importance sampling, Fokker-Planck and Langevin equations

Langevin equation
If we want to get some useful information out of this, we have to
average over all possible realizations of F(t), with the initial
velocity as a condition. A useful quantity for example is

〈v(t) · v(t)〉v0 = v−ξ2t0 + 2
∫ t

0
dτe−ξ(2t−τ)v0 · 〈F(τ)〉v0

+

∫ t

0
dτ ′

∫ t

0
dτe−ξ(2t−τ−τ ′)〈F(τ) · F(τ ′)〉v0 .



Importance sampling, Fokker-Planck and Langevin equations
Langevin equation
In order to continue we have to make some assumptions about the
conditional averages of the stochastic forces. In view of the chaotic
character of the stochastic forces the following assumptions seem
to be appropriate

〈F(t)〉 = 0,

and
〈F(t) · F(t ′)〉v0 = Cv0δ(t − t ′).

We omit the subscript v0, when the quantity of interest turns out
to be independent of v0. Using the last three equations we get

〈v(t) · v(t)〉v0 = v2
0 e
−2ξt +

Cv0

2ξ
(1− e−2ξt).

For large t this should be equal to 3kT/m, from which it follows
that

〈F(t) · F(t ′)〉 = 6
kT

m
ξδ(t − t ′).

This result is called the fluctuation-dissipation theorem .



Importance sampling, Fokker-Planck and Langevin equations

Langevin equation
Integrating

v(t) = v0e
−ξt +

∫ t

0
dτe−ξ(t−τ)F(τ),

we get

r(t) = r0 + v0
1
ξ

(1− e−ξt) +

∫ t

0
dτ

∫ τ

0
τ ′e−ξ(τ−τ ′)F(τ ′),

from which we calculate the mean square displacement

〈(r(t)− r0)2〉v0 =
v2
0
ξ

(1− e−ξt)2 +
3kT
mξ2

(2ξt − 3 + 4e−ξt − e−2ξt).



Importance sampling, Fokker-Planck and Langevin equations

Langevin equation
For very large t this becomes

〈(r(t)− r0)2〉 =
6kT
mξ

t

from which we get the Einstein relation

D =
kT

mξ

where we have used 〈(r(t)− r0)2〉 = 6Dt.



Efficient calculation of Slater determinants

I Repetition about many-body expectation values
I Construction of the Slater determinant
I Thursday March 19 we will discuss parallelization and hints

and tricks for efficient coding

You should start to implement the calculation of the Slater
determinants. Start with the beryllium atom and continue with the
neon atom. Together with parallelization, these are the tasks of
project 2. The pdf file and latex files are found in the folders



Efficient calculation of Slater determinants

The potentially most time-consuming part is the evaluation of the
gradient and the Laplacian of an N-particle Slater determinant.
We have to differentiate the determinant with respect to all spatial
coordinates of all particles. A brute force differentiation would
involve N · d evaluations of the entire determinant which would
even worsen the already undesirable time scaling, making it
Nd · O(N3) ∼ O(d · N4).
This poses serious hindrances to the overall efficiency of our code.



Matrix elements of Slater determinants

The efficiency can be improved however if we move only one
electron at the time. The Slater determinant matrix D̂ is defined by
the matrix elements

dij = φj(xi )

where φj(ri ) is a single particle wave function. The columns
correspond to the position of a given particle while the rows stand
for the various quantum numbers.



Efficient calculation of Slater determinants

What we need to realize is that when differentiating a Slater
determinant with respect to some given coordinate, only one row of
the corresponding Slater matrix is changed.
Therefore, by recalculating the whole determinant we risk producing
redundant information. The solution turns out to be an algorithm
that requires to keep track of the inverse of the Slater matrix.



Efficient calculation of Slater determinants

Let the current position in phase space be represented by the
(N · d)-element vector rold and the new suggested position by the
vector rnew.
The inverse of D̂ can be expressed in terms of its cofactors Cij and
its determinant (this our notation for a determinant) |D̂|:

d−1
ij =

Cji

|D̂|
(20)

Notice that the interchanged indices indicate that the matrix of
cofactors is to be transposed.



Efficient calculation of Slater determinants

If D̂ is invertible, then we must obviously have D̂−1D̂ = 1, or
explicitly in terms of the individual elements of D̂ and D̂−1:

N∑
k=1

dik d
−1
kj = δij (21)



Efficient calculation of Slater determinants

Consider the ratio, which we shall call R , between |D̂(rnew)| and
|D̂(rold)|. By definition, each of these determinants can individually
be expressed in terms of the i-th row of its cofactor matrix

R ≡ |D̂(rnew)|
|D̂(rold)|

=

∑N
j=1 dij(r

new)Cij(rnew)∑N
j=1 dij(rold)Cij(rold)

(22)



Efficient calculation of Slater determinants

Suppose now that we move only one particle at a time, meaning
that rnew differs from rold by the position of only one, say the i-th,
particle . This means that D̂(rnew) and D̂(rold) differ only by the
entries of the i-th row. Recall also that the i-th row of a cofactor
matrix Ĉ is independent of the entries of the i-th row of its
corresponding matrix D̂. In this particular case we therefore get
that the i-th row of Ĉ (rnew) and Ĉ (rold) must be equal. Explicitly,
we have:

Cij(rnew) = Cij(rold) ∀ j ∈ {1, . . . ,N} (23)



Efficient calculation of Slater determinants

Inserting this into the numerator of eq. (22) and using eq. (20) to
substitute the cofactors with the elements of the inverse matrix, we
get:

R =

∑N
j=1 dij(r

new)Cij(rold)∑N
j=1 dij(rold)Cij(rold)

=

∑N
j=1 dij(r

new) d−1
ji (rold)∑N

j=1 dij(rold) d−1
ji (rold)

(24)



Efficient calculation of Slater determinants

Now by eq. (21) the denominator of the rightmost expression must
be unity, so that we finally arrive at:

R =
N∑
j=1

dij(rnew) d−1
ji (rold) =

N∑
j=1

φj(rnewi ) d−1
ji (rold) (25)

What this means is that in order to get the ratio when only the i-th
particle has been moved, we only need to calculate the dot product
of the vector (φ1(rnewi ), . . . , φN(rnewi )) of single particle wave
functions evaluated at this new position with the i-th column of the
inverse matrix D̂−1 evaluated at the original position. Such an
operation has a time scaling of O(N). The only extra thing we
need to do is to maintain the inverse matrix D̂−1(xold).



Efficient calculation of Slater determinants

If the new position rnew is accepted, then the inverse matrix can by
suitably updated by an algorithm having a time scaling of O(N2).
This algorithm goes as follows. First we update all but the i-th
column of D̂−1. For each column j 6= i , we first calculate the
quantity:

Sj = (D̂(rnew)× D̂−1(rold))ij =
N∑
l=1

dil(rnew) d−1
lj (rold) (26)



Efficient calculation of Slater determinants

The new elements of the j-th column of D̂−1 are then given by:

d−1
kj (rnew) = d−1

kj (rold)−
Sj
R

d−1
ki (rold)

∀ k ∈ {1, . . . ,N}
j 6= i

(27)



Efficient calculation of Slater determinants

Finally the elements of the i-th column of D̂−1 are updated simply
as follows:

d−1
ki (rnew) =

1
R

d−1
ki (rold) ∀ k ∈ {1, . . . ,N} (28)

We see from these formulas that the time scaling of an update of
D̂−1 after changing one row of D̂ is O(N2).
The scheme is also applicable for the calculation of the ratios
involving derivatives. It turns out that differentiating the Slater
determinant with respect to the coordinates of a single particle ri
changes only the i-th row of the corresponding Slater matrix.



The gradient and the Laplacian

The gradient and the Laplacian can therefore be calculated as
follows:

~∇i |D̂(r)|
|D̂(r)|

=
N∑
j=1

~∇idij(r)d−1
ji (r) =

N∑
j=1

~∇iφj(ri )d−1
ji (r)

and

∇2
i |D̂(r)|
|D̂(r)|

=
N∑
j=1

∇2
i dij(r)d

−1
ji (r) =

N∑
j=1

∇2
i φj(ri ) d

−1
ji (r)



How to compute the derivates of the Slater determinant

Thus, to calculate all the derivatives of the Slater determinant, we
only need the derivatives of the single particle wave functions
(~∇iφj(ri ) and ∇2

i φj(ri )) and the elements of the corresponding
inverse Slater matrix (D̂−1(ri )). A calculation of a single derivative
is by the above result an O(N) operation. Since there are d · N
derivatives, the time scaling of the total evaluation becomes
O(d · N2). With an O(N2) updating algorithm for the inverse
matrix, the total scaling is no worse, which is far better than the
brute force approach yielding O(d · N4).
Important note: In most cases you end with closed form
expressions for the single-particle wave functions. It is then useful
to calculate the various derivatives and make separate functions for
them.



The Slater determinant

The Slater determinant takes the form

Φ(r1, r2, , r3, r4, α, β, γ, δ) =
1√
4!

∣∣∣∣∣∣∣∣
ψ100↑(r1) ψ100↑(r2) ψ100↑(r3) ψ100↑(r4)
ψ100↓(r1) ψ100↓(r2) ψ100↓(r3) ψ100↓(r4)
ψ200↑(r1) ψ200↑(r2) ψ200↑(r3) ψ200↑(r4)
ψ200↓(r1) ψ200↓(r2) ψ200↓(r3) ψ200↓(r4)

∣∣∣∣∣∣∣∣ .
The Slater determinant as written is zero since the spatial wave
functions for the spin up and spin down states are equal. But we
can rewrite it as the product of two Slater determinants, one for
spin up and one for spin down.



Rewriting the Slater determinant

We can rewrite it as

Φ(r1, r2, , r3, r4, α, β, γ, δ) = det ↑ (1, 2) det ↓ (3, 4)−det ↑ (1, 3) det ↓ (2, 4)

− det ↑ (1, 4) det ↓ (3, 2)+det ↑ (2, 3) det ↓ (1, 4)−det ↑ (2, 4) det ↓ (1, 3)

+ det ↑ (3, 4) det ↓ (1, 2),

where we have defined

det ↑ (1, 2) =
1√
2

∣∣∣∣ ψ100↑(r1) ψ100↑(r2)
ψ200↑(r1) ψ200↑(r2)

∣∣∣∣ ,
and

det ↓ (3, 4) =
1√
2

∣∣∣∣ ψ100↓(r3) ψ100↓(r4)
ψ200↓(r3) ψ200↓(r4)

∣∣∣∣ .
The total determinant is still zero!



Splitting the Slater determinant
We want to avoid to sum over spin variables, in particular when the
interaction does not depend on spin.
It can be shown, see for example Moskowitz and Kalos,
Int. J. Quantum Chem. 20 1107 (1981), that for the variational
energy we can approximate the Slater determinant as

Φ(r1, r2, , r3, r4, α, β, γ, δ) ∝ det ↑ (1, 2) det ↓ (3, 4),

or more generally as

Φ(r1, r2, . . . rN) ∝ det ↑ det ↓,

where we have the Slater determinant as the product of a spin up
part involving the number of electrons with spin up only (2 for
beryllium and 5 for neon) and a spin down part involving the
electrons with spin down.
This ansatz is not antisymmetric under the exchange of electrons
with opposite spins but it can be shown (show this) that it gives
the same expectation value for the energy as the full Slater
determinant.
As long as the Hamiltonian is spin independent, the above is
correct. It is rather straightforward to see this if you go back to the
equations for the energy discussed earlier this semester.

http://onlinelibrary.wiley.com/doi/10.1002/qua.560200508/abstract


Spin up and spin down parts

We will thus factorize the full determinant |D̂| into two smaller
ones, where each can be identified with ↑ and ↓ respectively:

|D̂| = |D̂|↑ · |D̂|↓



Factorization

The combined dimensionality of the two smaller determinants
equals the dimensionality of the full determinant. Such a
factorization is advantageous in that it makes it possible to perform
the calculation of the ratio R and the updating of the inverse
matrix separately for |D̂|↑ and |D̂|↓:

|D̂|new

|D̂|old
=
|D̂|new↑
|D̂|old↑

·
|D̂|new↓
|D̂|old↓

This reduces the calculation time by a constant factor. The
maximal time reduction happens in a system of equal numbers of ↑
and ↓ particles, so that the two factorized determinants are half the
size of the original one.



Number of operations

Consider the case of moving only one particle at a time which
originally had the following time scaling for one transition:

OR(N) + Oinverse(N
2)

For the factorized determinants one of the two determinants is
obviously unaffected by the change so that it cancels from the ratio
R .



Counting the number of FLOPS

Therefore, only one determinant of size N/2 is involved in each
calculation of R and update of the inverse matrix. The scaling of
each transition then becomes:

OR(N/2) + Oinverse(N
2/4)

and the time scaling when the transitions for all N particles are put
together:

OR(N2/2) + Oinverse(N
3/4)

which gives the same reduction as in the case of moving all
particles at once.



Computation of ratios

Computing the ratios discussed above requires that we maintain the
inverse of the Slater matrix evaluated at the current position. Each
time a trial position is accepted, the row number i of the Slater
matrix changes and updating its inverse has to be carried out.
Getting the inverse of an N ×N matrix by Gaussian elimination has
a complexity of order of O(N3) operations, a luxury that we cannot
afford for each time a particle move is accepted. We will use the
expression

d−1
kj (xnew) =


d−1
kj (xold)− d−1

ki (xold)
R

∑N
l=1 dil(x

new)d−1
lj (xold) if j 6= i

d−1
ki (xold)

R

∑N
l=1 dil(x

old)d−1
lj (xold) if j = i



Scaling properties

This equation scales as O(N2). The evaluation of the determinant
of an N × N matrix by standard Gaussian elimination requires
O(N3) calculations. As there are Nd independent coordinates we
need to evaluate Nd Slater determinants for the gradient (quantum
force) and Nd for the Laplacian (kinetic energy). With the updating
algorithm we need only to invert the Slater determinant matrix
once. This can be done by standard LU decomposition methods.



How to get the determinant

Determining a determinant of an N × N matrix by standard
Gaussian elimination is of the order of O(N3) calculations. As there
are N · d independent coordinates we need to evaluate Nd Slater
determinants for the gradient (quantum force) and N · d for the
Laplacian (kinetic energy)
With the updating algorithm we need only to invert the Slater
determinant matrix once. This is done by calling standard LU
decomposition methods.
If you choose to implement the above recipe for the computation of
the Slater determinant, you need to LU decompose the Slater
matrix. This is described in chapter 6 of the lecture notes from
FYS3150.
You need to call the function ludcmp in lib.cpp. You need to
transfer the Slater matrix and its dimension. You get back an LU
decomposed matrix.



LU decomposition and determinant

The LU decomposition method means that we can rewrite this
matrix as the product of two matrices B̂ and Ĉ where

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 =


1 0 0 0
b21 1 0 0
b31 b32 1 0
b41 b42 b43 1




c11 c12 c13 c14
0 c22 c23 c24
0 0 c33 c34
0 0 0 c44

 .



Determinant of a matrix

The matrix Â ∈ Rn×n has an LU factorization if the determinant is
different from zero. If the LU factorization exists and Â is
non-singular, then the LU factorization is unique and the
determinant is given by

|Â| = c11c22 . . . cnn.



Expectation value of the kinetic energy
The expectation value of the kinetic energy expressed in atomic
units for electron i is

〈K̂i 〉 = −1
2
〈Ψ|∇2

i |Ψ〉
〈Ψ|Ψ〉

,

Ki = −1
2
∇2

i Ψ

Ψ
. (29)

∇2Ψ

Ψ
=
∇2(ΨD ΨC )

ΨD ΨC
=
∇ · [∇(ΨD ΨC )]

ΨD ΨC
=
∇ · [ΨC∇ΨD + ΨD∇ΨC ]

ΨD ΨC

=
∇ΨC · ∇ΨD + ΨC∇2ΨD +∇ΨD · ∇ΨC + ΨD∇2ΨC

ΨD ΨC

(30)

∇2Ψ

Ψ
=
∇2ΨD

ΨD
+
∇2ΨC

ΨC
+ 2
∇ΨD

ΨD
· ∇ΨC

ΨC
(31)



Second derivative of the Jastrow factor

The second derivative of the Jastrow factor divided by the Jastrow
factor (the way it enters the kinetic energy) is

[
∇2ΨC

ΨC

]
x

= 2
N∑

k=1

k−1∑
i=1

∂2gik
∂x2

k

+
N∑

k=1

(
k−1∑
i=1

∂gik
∂xk
−

N∑
i=k+1

∂gki
∂xi

)2



Functional form

But we have a simple form for the function, namely

ΨC =
∏
i<j

exp f (rij) = exp

∑
i<j

arij
1 + βrij

,
and it is easy to see that for particle k we have

∇2
kΨC

ΨC
=
∑
ij 6=k

(rk − ri )(rk − rj)
rki rkj

f ′(rki )f
′(rkj)+

∑
j 6=k

(
f ′′(rkj) +

2
rkj

f ′(rkj)

)



Second derivative of the Jastrow factor

Using
f (rij) =

arij
1 + βrij

,

and g ′(rkj) = dg(rkj)/drkj and g ′′(rkj) = d2g(rkj)/dr
2
kj we find that

for particle k we have

∇2
kΨC

ΨC
=
∑
ij 6=k

(rk − ri )(rk − rj)
rki rkj

a

(1 + βrki )2
a

(1 + βrkj)2 +
∑
j 6=k

(
2a

rkj(1 + βrkj)2 −
2aβ

(1 + βrkj)3

)



Gradient and Laplacian

The gradient and Laplacian can be calculated as follows:

∇i |D̂(r)|
|D̂(r)|

=
N∑
j=1

~∇idij(r) d−1
ji (r) =

N∑
j=1

~∇iφj(ri ) d−1
ji (r)

and

∇2
i |D̂(r)|
|D̂(r)|

=
N∑
j=1

∇2
i dij(r) d

−1
ji (r) =

N∑
j=1

∇2
i φj(ri ) d

−1
ji (r)



The gradient for the determinant

The gradient for the determinant is

∇i |D̂(r)|
|D̂(r)|

=
N∑
j=1

∇idij(r) d−1
ji (r) =

N∑
j=1

∇iφj(ri ) d−1
ji (r).



Jastrow gradient in quantum force

We have

ΨC =
∏
i<j

g(rij) = exp

∑
i<j

arij
1 + βrij

,
the gradient needed for the quantum force and local energy is easy
to compute. We get for particle k

∇kΨC

ΨC
=
∑
j 6=k

rkj
rkj

a

(1 + βrkj)2 ,

which is rather easy to code. Remember to sum over all particles
when you compute the local energy.



Metropolis Hastings part

We need to compute the ratio between wave functions, in particular
for the Slater determinants.

R =
N∑
j=1

dij(rnew) d−1
ji (rold) =

N∑
j=1

φj(rnewi ) d−1
ji (rold)

What this means is that in order to get the ratio when only the i-th
particle has been moved, we only need to calculate the dot product
of the vector (φ1(rnewi ), . . . , φN(rnewi )) of single particle wave
functions evaluated at this new position with the i-th column of the
inverse matrix D̂−1 evaluated at the original position. Such an
operation has a time scaling of O(N). The only extra thing we
need to do is to maintain the inverse matrix D̂−1(xold).



Single-particle states

The 1s hydrogen like wave function

R10(r) = 2
(
Z

a0

)3/2

exp (−Zr/a0) = u10/r

The total energy for helium (not the Hartree or Fock terms) from
the direct and the exchange term should give 5Z/8.
The single-particle energy with no interactions should give
−Z 2/2n2.



Single-particle states

The 2s hydrogen-like wave function is

R20(r) = 2
(

Z

2a0

)3/2(
1− Zr

2a0

)
exp (−Zr/2a0) = u20/r

and the 2p hydrogen -like wave function is

R21(r) =
1√
3

(
Z

2a0

)3/2 Zr

a0
exp (−Zr/2a0) = u21/r

We use a0 = 1.



Problems with neon states for VMC

In the standard textbook case one uses spherical coordinates in
order to get the hydrogen-like wave functions

x = rsinθcosφ,

y = rsinθsinφ,

and
z = rcosθ.



Problems with neon states for VMC

The reason we introduce spherical coordinates is the spherical
symmetry of the Coulomb potential

e2

4πε0r
=

e2

4πε0
√
x2 + y2 + z2

,

where we have used r =
√

x2 + y2 + z2. It is not possible to find a
separable solution of the type

ψ(x , y , z) = ψ(x)ψ(y)ψ(z).

However, with spherical coordinates we can find a solution of the
form

ψ(r , θ, φ) = R(r)P(θ)F (φ).



Spherical harmonics

The angle-dependent differential equations result in the spherical
harmonic functions as solutions, with quantum numbers l and ml .
These functions are given by

Ylml
(θ, φ) = P(θ)F (φ) =

√
(2l + 1)(l −ml)!

4π(l + ml)!
Pml
l (cos(θ)) exp (imlφ),

with Pml
l being the associated Legendre polynomials They can be

rewritten as

Ylml
(θ, φ) = sin|ml |(θ)× (polynom(cosθ)) exp (imlφ),



Examples of spherical harmonics

We have the following selected examples

Y00 =

√
1
4π
,

for l = ml = 0,

Y10 =

√
3
4π

cos(θ),

for l = 1 og ml = 0,

Y1±1 =

√
3
8π

sin(θ)exp(±iφ),

for l = 1 og ml = ±1.



Problems with spherical harmonics

A problem with the spherical harmonics is that they are complex.
The introduction of solid harmonics allows the use of real orbital
wave-functions for a wide range of applications. The complex solid
harmonics Ylml

(r) are related to the spherical harmonics Ylml
(r)

through
Ylml

(r) = r lYlml
(r).

By factoring out the leading r -dependency of the radial-function

Rnl(r) = r−lRnl(r),

we obtain
Ψnlml

(r , θ, φ) = Rnl(r) · Ylml
(r).



Real solid harmonics

For the theoretical development of the real solid harmonics we first
express the complex solid harmonics, Clml

, by (complex) Cartesian
coordinates, and arrive at the real solid harmonics, Slml

, through
the unitary transformation(

Slml

Sl ,−ml

)
=

1√
2

(
(−1)ml 1
−(−1)ml i i

)(
Clml

Cl ,−ml

)
.



Solid harmonics

This transformation will not alter any physical quantities that are
degenerate in the subspace consisting of opposite magnetic
quantum numbers (the angular momentum l is equal for both these
cases). This means for example that the above transformation does
not alter the energies, unless an external magnetic field is applied
to the system. Henceforth, we will use the solid harmonics, and
note that changing the spherical potential beyond the Coulomb
potential will not alter the solid harmonics.



Relation between solid harmonics and spherical harmonics

We have defined
Ylml

(r) = r lYlml
(r).

The real-valued spherical harmonics are defined as

Sl0 =

√
4π

2l + 1
Yl0(r),

Slml
= (−1)ml

√
8π

2l + 1
ReYl0(r),

Slml
= (−1)ml

√
8π

2l + 1
ImYl0(r),

for ml > 0.



The lowest-order real solid harmonics

ml\l 0 1 2 3

+3 1
2

√
5
2 (x

2 − 3y2)x

+2 1
2

√
3(x2 − y2) 1

2

√
15(x2 − y2)z

+1 x
√

3xz 1
2

√
3
2 (5z

2 − r2)x

0 y 1
2 (3z

2 − r2) 1
2 (5z

2 − 3r2)x

-1 z
√

3yz 1
2

√
3
2 (5z

2 − r2)y

-2
√

3xy
√

15xyz

-3 1
2

√
5
2 (3x

2 − y2)y


