
Variational Monte Carlo methods

Morten Hjorth-Jensen1,2

1National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA
2Department of Physics, University of Oslo, Oslo, Norway

Spring 2015

Quantum Monte Carlo Motivation
Given a hamiltonian H and a trial wave function ΨT , the variational principle

states that the expectation value of 〈H〉, defined through

E[H] = 〈H〉 =
∫
dRΨ∗T (R)H(R)ΨT (R)∫
dRΨ∗T (R)ΨT (R)

,

is an upper bound to the ground state energy E0 of the hamiltonian H, that is

E0 ≤ 〈H〉.

In general, the integrals involved in the calculation of various expectation values
are multi-dimensional ones. Traditional integration methods such as the Gauss-
Legendre will not be adequate for say the computation of the energy of a
many-body system.

Quantum Monte Carlo Motivation
The trial wave function can be expanded in the eigenstates of the hamiltonian

since they form a complete set, viz.,

ΨT (R) =
∑
i

aiΨi(R),

and assuming the set of eigenfunctions to be normalized one obtains∑
nm a

∗
man

∫
dRΨ∗m(R)H(R)Ψn(R)∑

nm a
∗
man

∫
dRΨ∗m(R)Ψn(R)

=
∑
n a

2
nEn∑

n a
2
n

≥ E0,

where we used that H(R)Ψn(R) = EnΨn(R). In general, the integrals involved
in the calculation of various expectation values are multi-dimensional ones. The
variational principle yields the lowest state of a given symmetry.



Quantum Monte Carlo Motivation
In most cases, a wave function has only small values in large parts of configura-

tion space, and a straightforward procedure which uses homogenously distributed
random points in configuration space will most likely lead to poor results. This
may suggest that some kind of importance sampling combined with e.g., the
Metropolis algorithm may be a more efficient way of obtaining the ground state
energy. The hope is then that those regions of configurations space where the
wave function assumes appreciable values are sampled more efficiently.

Quantum Monte Carlo Motivation
The tedious part in a VMC calculation is the search for the variational

minimum. A good knowledge of the system is required in order to carry out
reasonable VMC calculations. This is not always the case, and often VMC
calculations serve rather as the starting point for so-called diffusion Monte
Carlo calculations (DMC). DMC is a way of solving exactly the many-body
Schroedinger equation by means of a stochastic procedure. A good guess on the
binding energy and its wave function is however necessary. A carefully performed
VMC calculation can aid in this context.

Quantum Monte Carlo Motivation

• Construct first a trial wave function ψT (R,α), for a many-body system
consisting of N particles located at positions

R = (R1, . . . ,RN ). The trial wave function depends on α variational parameters
α = (α1, . . . , αM ).
• Then we evaluate the expectation value of the hamiltonian H

E[H] = 〈H〉 =
∫
dRΨ∗T (R,α)H(R)ΨT (R,α)∫
dRΨ∗T (R,α)ΨT (R,α)

.

• Thereafter we vary α according to some minimization algorithm and return
to the first step.

Quantum Monte Carlo Motivation
Basic steps. Choose a trial wave function ψT (R).

P (R) = |ψT (R)|2∫
|ψT (R)|2 dR

.

This is our new probability distribution function (PDF). The approximation to
the expectation value of the Hamiltonian is now

E[H(α)] =
∫
dRΨ∗T (R,α)H(R)ΨT (R,α)∫
dRΨ∗T (R,α)ΨT (R,α)

.

2



Quantum Monte Carlo Motivation
Define a new quantity

EL(R,α) = 1
ψT (R,α)HψT (R,α),

called the local energy, which, together with our trial PDF yields

E[H(α)] =
∫
P (R)EL(R)dR ≈ 1

N

N∑
i=1

P (Ri,α)EL(Ri,α)

with N being the number of Monte Carlo samples.

Quantum Monte Carlo
The Algorithm for performing a variational Monte Carlo calculations runs

thus as this

• Initialisation: Fix the number of Monte Carlo steps. Choose an initial R
and variational parameters α and calculate |ψαT (R)|2.

• Initialise the energy and the variance and start the Monte Carlo calculation.

– Calculate a trial position Rp = R + r ∗ step where r is a random
variable r ∈ [0, 1].

– Metropolis algorithm to accept or reject this move w = P (Rp)/P (R).
– If the step is accepted, then we set R = Rp.
– Update averages

• Finish and compute final averages.

Observe that the jumping in space is governed by the variable step. This is
Called brute-force sampling. Need importance sampling to get more relevant
sampling, see lectures below.

Quantum Monte Carlo: hydrogen atom
The radial Schroedinger equation for the hydrogen atom can be written as

− ~2

2m
∂2u(r)
∂r2 −

(
ke2

r
− ~2l(l + 1)

2mr2

)
u(r) = Eu(r),

or with dimensionless variables

−1
2
∂2u(ρ)
∂ρ2 − u(ρ)

ρ
+ l(l + 1)

2ρ2 u(ρ)− λu(ρ) = 0,

3



with the hamiltonian

H = −1
2
∂2

∂ρ2 −
1
ρ

+ l(l + 1)
2ρ2 .

Use variational parameter α in the trial wave function

uαT (ρ) = αρe−αρ.

Quantum Monte Carlo: hydrogen atom
Inserting this wave function into the expression for the local energy EL gives

EL(ρ) = −1
ρ
− α

2

(
α− 2

ρ

)
.

A simple variational Monte Carlo calculation results in

α 〈H〉 σ2 σ/
√
N

7.00000E-01 -4.57759E-01 4.51201E-02 6.71715E-04
8.00000E-01 -4.81461E-01 3.05736E-02 5.52934E-04
9.00000E-01 -4.95899E-01 8.20497E-03 2.86443E-04
1.00000E-00 -5.00000E-01 0.00000E+00 0.00000E+00
1.10000E+00 -4.93738E-01 1.16989E-02 3.42036E-04
1.20000E+00 -4.75563E-01 8.85899E-02 9.41222E-04
1.30000E+00 -4.54341E-01 1.45171E-01 1.20487E-03

Quantum Monte Carlo: hydrogen atom
We note that at α = 1 we obtain the exact result, and the variance is zero,

as it should. The reason is that we then have the exact wave function, and the
action of the hamiltionan on the wave function

Hψ = constant× ψ,

yields just a constant. The integral which defines various expectation values
involving moments of the hamiltonian becomes then

〈Hn〉 =
∫
dRΨ∗T (R)Hn(R)ΨT (R)∫

dRΨ∗T (R)ΨT (R)
= constant×

∫
dRΨ∗T (R)ΨT (R)∫
dRΨ∗T (R)ΨT (R)

= constant.

This gives an important information: the exact wave function leads
to zero variance! Variation is then performed by minimizing both the energy
and the variance.

4



Quantum Monte Carlo: the helium atom
The helium atom consists of two electrons and a nucleus with charge Z = 2.

The contribution to the potential energy due to the attraction from the nucleus
is

−2ke2

r1
− 2ke2

r2
,

and if we add the repulsion arising from the two interacting electrons, we obtain
the potential energy

V (r1, r2) = −2ke2

r1
− 2ke2

r2
+ ke2

r12
,

with the electrons separated at a distance r12 = |r1 − r2|.

Quantum Monte Carlo: the helium atom
The hamiltonian becomes then

Ĥ = −~2∇2
1

2m − ~2∇2
2

2m − 2ke2

r1
− 2ke2

r2
+ ke2

r12
,

and Schroedingers equation reads

Ĥψ = Eψ.

All observables are evaluated with respect to the probability distribution

P (R) = |ψT (R)|2∫
|ψT (R)|2 dR

.

generated by the trial wave function. The trial wave function must approximate
an exact eigenstate in order that accurate results are to be obtained.

Quantum Monte Carlo: the helium atom
Choice of trial wave function for Helium: Assume r1 → 0.

EL(R) = 1
ψT (R)HψT (R) = 1

ψT (R)

(
−1

2∇
2
1 −

Z

r1

)
ψT (R) + finite terms.

EL(R) = 1
RT (r1)

(
−1

2
d2

dr2
1
− 1
r1

d

dr1
− Z

r1

)
RT (r1) + finite terms

For small values of r1, the terms which dominate are

lim
r1→0

EL(R) = 1
RT (r1)

(
− 1
r1

d

dr1
− Z

r1

)
RT (r1),

since the second derivative does not diverge due to the finiteness of Ψ at the
origin.

5



Quantum Monte Carlo: the helium atom
This results in

1
RT (r1)

dRT (r1)
dr1

= −Z,

and
RT (r1) ∝ e−Zr1 .

A similar condition applies to electron 2 as well. For orbital momenta l > 0 we
have

1
RT (r)

dRT (r)
dr

= − Z

l + 1 .

Similarly, studying the case r12 → 0 we can write a possible trial wave function
as

ψT (R) = e−α(r1+r2)eβr12 .

The last equation can be generalized to

ψT (R) = φ(r1)φ(r2) . . . φ(rN )
∏
i<j

f(rij),

for a system with N electrons or particles.

The first attempt at solving the helium atom
During the development of our code we need to make several checks. It is

also very instructive to compute a closed form expression for the local energy.
Since our wave function is rather simple it is straightforward to find an analytic
expressions. Consider first the case of the simple helium function

ΨT (r1, r2) = e−α(r1+r2)

The local energy is for this case

EL1 = (α− Z)
(

1
r1

+ 1
r2

)
+ 1
r12
− α2

which gives an expectation value for the local energy given by

〈EL1〉 = α2 − 2α
(
Z − 5

16

)

The first attempt at solving the Helium atom
With closed form formulae we can speed up the computation of the correlation.

In our case we write it as

ΨC = exp

∑
i<j

arij
1 + βrij

,
6



which means that the gradient needed for the so-called quantum force and local
energy can be calculated analytically. This will speed up your code since the
computation of the correlation part and the Slater determinant are the most
time consuming parts in your code.

We will refer to this correlation function as ΨC or the linear Pade-Jastrow.

The first attempt at solving the Helium atom
We can test this by computing the local energy for our helium wave function

ψT (r1, r2) = exp (−α(r1 + r2)) exp
(

r12

2(1 + βr12)

)
,

with α and β as variational parameters.
The local energy is for this case

EL2 = EL1+ 1
2(1 + βr12)2

{
α(r1 + r2)

r12
(1− r1r2

r1r2
)− 1

2(1 + βr12)2 −
2
r12

+ 2β
1 + βr12

}
It is very useful to test your code against these expressions. It means also that
you don’t need to compute a derivative numerically as discussed in the code
example below.

The first attempt at solving the Helium atom
For the computation of various derivatives with different types of wave func-

tions, you will find it useful to use python with symbolic python, that is sympy,
see online manual. Using sympy allows you autogenerate both Latex code as
well c++, python or Fortran codes. Here you will find some simple examples.
We choose the 2s hydrogen-orbital (not normalized) as an example

φ2s(r) = (Zr − 2) exp−(1
2Zr),

with r2 = x2 + y2 + z2.

from sympy import symbols, diff, exp, sqrt
x, y, z, Z = symbols(’x y z Z’)
r = sqrt(x*x + y*y + z*z)
r
phi = (Z*r - 2)*exp(-Z*r/2)
phi
diff(phi, x)

This doesn’t look very nice, but sympy provides several functions that allow for
improving and simplifying the output.

7

http://docs.sympy.org/latest/index.html


The first attempt at solving the Helium atom
We can improve our output by factorizing and substituting expressions

from sympy import symbols, diff, exp, sqrt, factor, Symbol, printing
x, y, z, Z = symbols(’x y z Z’)
r = sqrt(x*x + y*y + z*z)
phi = (Z*r - 2)*exp(-Z*r/2)
R = Symbol(’r’) #Creates a symbolic equivalent of r
#print latex and c++ code
print printing.latex(diff(phi, x).factor().subs(r, R))
print printing.ccode(diff(phi, x).factor().subs(r, R))

The first attempt at solving the Helium atom
We can in turn look at second derivatives

from sympy import symbols, diff, exp, sqrt, factor, Symbol, printing
x, y, z, Z = symbols(’x y z Z’)
r = sqrt(x*x + y*y + z*z)
phi = (Z*r - 2)*exp(-Z*r/2)
R = Symbol(’r’) #Creates a symbolic equivalent of r
(diff(diff(phi, x), x) + diff(diff(phi, y), y) + diff(diff(phi, z), z)).factor().subs(r, R)
# Collect the Z values
(diff(diff(phi, x), x) + diff(diff(phi, y), y) +diff(diff(phi, z), z)).factor().collect(Z).subs(r, R)
# Factorize also the r**2 terms
(diff(diff(phi, x), x) + diff(diff(phi, y), y) + diff(diff(phi, z), z)).factor().collect(Z).subs(r, R).subs(r**2, R**2).factor()
print printing.ccode((diff(diff(phi, x), x) + diff(diff(phi, y), y) + diff(diff(phi, z), z)).factor().collect(Z).subs(r, R).subs(r**2, R**2).factor())

With some practice this allows one to be able to check one’s own calculation and
translate automatically into code lines.

The first attempt at solving the Helium atom
The c++ code with a VMC Solver class, main program first.

#include "vmcsolver.h"
#include <iostream>
using namespace std;

int main()
{

VMCSolver *solver = new VMCSolver();
solver->runMonteCarloIntegration();
return 0;

}

The first attempt at solving the Helium atom
The c++ code with a VMC Solver class, the VMCSolver header file.

#ifndef VMCSOLVER_H
#define VMCSOLVER_H
#include <armadillo>
using namespace arma;
class VMCSolver
{

8



public:
VMCSolver();
void runMonteCarloIntegration();

private:
double waveFunction(const mat &r);
double localEnergy(const mat &r);
int nDimensions;
int charge;
double stepLength;
int nParticles;
double h;
double h2;
long idum;
double alpha;
int nCycles;
mat rOld;
mat rNew;

};
#endif // VMCSOLVER_H

The first attempt at solving the Helium atom
The c++ code with a VMC Solver class, VMCSolver codes, initialize.

#include "vmcsolver.h"
#include "lib.h"
#include <armadillo>
#include <iostream>
using namespace arma;
using namespace std;

VMCSolver::VMCSolver() :
nDimensions(3),
charge(2),
stepLength(1.0),
nParticles(2),
h(0.001),
h2(1000000),
idum(-1),
alpha(0.5*charge),
nCycles(1000000)

{
}

The first attempt at solving the Helium atom
The c++ code with a VMC Solver class, VMCSolver codes.

void VMCSolver::runMonteCarloIntegration()
{

rOld = zeros<mat>(nParticles, nDimensions);
rNew = zeros<mat>(nParticles, nDimensions);
double waveFunctionOld = 0;
double waveFunctionNew = 0;
double energySum = 0;
double energySquaredSum = 0;
double deltaE;
// initial trial positions

9



for(int i = 0; i < nParticles; i++) {
for(int j = 0; j < nDimensions; j++) {

rOld(i,j) = stepLength * (ran2(&idum) - 0.5);
}

}
rNew = rOld;
// loop over Monte Carlo cycles
for(int cycle = 0; cycle < nCycles; cycle++) {

// Store the current value of the wave function
waveFunctionOld = waveFunction(rOld);
// New position to test
for(int i = 0; i < nParticles; i++) {

for(int j = 0; j < nDimensions; j++) {
rNew(i,j) = rOld(i,j) + stepLength*(ran2(&idum) - 0.5);

}
// Recalculate the value of the wave function
waveFunctionNew = waveFunction(rNew);
// Check for step acceptance (if yes, update position, if no, reset position)
if(ran2(&idum) <= (waveFunctionNew*waveFunctionNew) / (waveFunctionOld*waveFunctionOld)) {

for(int j = 0; j < nDimensions; j++) {
rOld(i,j) = rNew(i,j);
waveFunctionOld = waveFunctionNew;

}
} else {

for(int j = 0; j < nDimensions; j++) {
rNew(i,j) = rOld(i,j);

}
}
// update energies
deltaE = localEnergy(rNew);
energySum += deltaE;
energySquaredSum += deltaE*deltaE;

}
}
double energy = energySum/(nCycles * nParticles);
double energySquared = energySquaredSum/(nCycles * nParticles);
cout << "Energy: " << energy << " Energy (squared sum): " << energySquared << endl;

}

The first attempt at solving the Helium atom
The c++ code with a VMC Solver class, VMCSolver codes.

double VMCSolver::localEnergy(const mat &r)
{

mat rPlus = zeros<mat>(nParticles, nDimensions);
mat rMinus = zeros<mat>(nParticles, nDimensions);
rPlus = rMinus = r;
double waveFunctionMinus = 0;
double waveFunctionPlus = 0;
double waveFunctionCurrent = waveFunction(r);
// Kinetic energy, brute force derivations
double kineticEnergy = 0;
for(int i = 0; i < nParticles; i++) {

for(int j = 0; j < nDimensions; j++) {
rPlus(i,j) += h;
rMinus(i,j) -= h;
waveFunctionMinus = waveFunction(rMinus);
waveFunctionPlus = waveFunction(rPlus);
kineticEnergy -= (waveFunctionMinus + waveFunctionPlus - 2 * waveFunctionCurrent);

10



rPlus(i,j) = r(i,j);
rMinus(i,j) = r(i,j);

}
}
kineticEnergy = 0.5 * h2 * kineticEnergy / waveFunctionCurrent;
// Potential energy
double potentialEnergy = 0;
double rSingleParticle = 0;
for(int i = 0; i < nParticles; i++) {

rSingleParticle = 0;
for(int j = 0; j < nDimensions; j++) {

rSingleParticle += r(i,j)*r(i,j);
}
potentialEnergy -= charge / sqrt(rSingleParticle);

}
// Contribution from electron-electron potential
double r12 = 0;
for(int i = 0; i < nParticles; i++) {

for(int j = i + 1; j < nParticles; j++) {
r12 = 0;
for(int k = 0; k < nDimensions; k++) {

r12 += (r(i,k) - r(j,k)) * (r(i,k) - r(j,k));
}
potentialEnergy += 1 / sqrt(r12);

}
}
return kineticEnergy + potentialEnergy;

}

The first attempt at solving the Helium atom
The c++ code with a VMC Solver class, VMCSolver codes.

double VMCSolver::waveFunction(const mat &r)
{

double argument = 0;
for(int i = 0; i < nParticles; i++) {

double rSingleParticle = 0;
for(int j = 0; j < nDimensions; j++) {

rSingleParticle += r(i,j) * r(i,j);
}
argument += sqrt(rSingleParticle);

}
return exp(-argument * alpha);

}

The first attempt at solving the Helium atom
The c++ code with a VMC Solver class, the VMCSolver header file.

#include <armadillo>
#include <iostream>
using namespace arma;
using namespace std;
double ran2(long *);

class VMCSolver
{
public:

11



VMCSolver();
void runMonteCarloIntegration();

private:
double waveFunction(const mat &r);
double localEnergy(const mat &r);
int nDimensions;
int charge;
double stepLength;
int nParticles;
double h;
double h2;
long idum;
double alpha;
int nCycles;
mat rOld;
mat rNew;

};

VMCSolver::VMCSolver() :
nDimensions(3),
charge(2),
stepLength(1.0),
nParticles(2),
h(0.001),
h2(1000000),
idum(-1),
alpha(0.5*charge),
nCycles(1000000)

{
}

void VMCSolver::runMonteCarloIntegration()
{

rOld = zeros<mat>(nParticles, nDimensions);
rNew = zeros<mat>(nParticles, nDimensions);
double waveFunctionOld = 0;
double waveFunctionNew = 0;
double energySum = 0;
double energySquaredSum = 0;
double deltaE;
// initial trial positions
for(int i = 0; i < nParticles; i++) {

for(int j = 0; j < nDimensions; j++) {
rOld(i,j) = stepLength * (ran2(&idum) - 0.5);

}
}
rNew = rOld;
// loop over Monte Carlo cycles
for(int cycle = 0; cycle < nCycles; cycle++) {

// Store the current value of the wave function
waveFunctionOld = waveFunction(rOld);
// New position to test
for(int i = 0; i < nParticles; i++) {

for(int j = 0; j < nDimensions; j++) {
rNew(i,j) = rOld(i,j) + stepLength*(ran2(&idum) - 0.5);

}
// Recalculate the value of the wave function
waveFunctionNew = waveFunction(rNew);
// Check for step acceptance (if yes, update position, if no, reset position)
if(ran2(&idum) <= (waveFunctionNew*waveFunctionNew) / (waveFunctionOld*waveFunctionOld)) {

12



for(int j = 0; j < nDimensions; j++) {
rOld(i,j) = rNew(i,j);
waveFunctionOld = waveFunctionNew;

}
} else {

for(int j = 0; j < nDimensions; j++) {
rNew(i,j) = rOld(i,j);

}
}
// update energies
deltaE = localEnergy(rNew);
energySum += deltaE;
energySquaredSum += deltaE*deltaE;

}
}
double energy = energySum/(nCycles * nParticles);
double energySquared = energySquaredSum/(nCycles * nParticles);
cout << "Energy: " << energy << " Energy (squared sum): " << energySquared << endl;

}

double VMCSolver::localEnergy(const mat &r)
{

mat rPlus = zeros<mat>(nParticles, nDimensions);
mat rMinus = zeros<mat>(nParticles, nDimensions);
rPlus = rMinus = r;
double waveFunctionMinus = 0;
double waveFunctionPlus = 0;
double waveFunctionCurrent = waveFunction(r);
// Kinetic energy, brute force derivations
double kineticEnergy = 0;
for(int i = 0; i < nParticles; i++) {

for(int j = 0; j < nDimensions; j++) {
rPlus(i,j) += h;
rMinus(i,j) -= h;
waveFunctionMinus = waveFunction(rMinus);
waveFunctionPlus = waveFunction(rPlus);
kineticEnergy -= (waveFunctionMinus + waveFunctionPlus - 2 * waveFunctionCurrent);
rPlus(i,j) = r(i,j);
rMinus(i,j) = r(i,j);

}
}
kineticEnergy = 0.5 * h2 * kineticEnergy / waveFunctionCurrent;
// Potential energy
double potentialEnergy = 0;
double rSingleParticle = 0;
for(int i = 0; i < nParticles; i++) {

rSingleParticle = 0;
for(int j = 0; j < nDimensions; j++) {

rSingleParticle += r(i,j)*r(i,j);
}
potentialEnergy -= charge / sqrt(rSingleParticle);

}
// Contribution from electron-electron potential
double r12 = 0;
for(int i = 0; i < nParticles; i++) {

for(int j = i + 1; j < nParticles; j++) {
r12 = 0;
for(int k = 0; k < nDimensions; k++) {

r12 += (r(i,k) - r(j,k)) * (r(i,k) - r(j,k));
}
potentialEnergy += 1 / sqrt(r12);

13



}
}
return kineticEnergy + potentialEnergy;

}

double VMCSolver::waveFunction(const mat &r)
{

double argument = 0;
for(int i = 0; i < nParticles; i++) {

double rSingleParticle = 0;
for(int j = 0; j < nDimensions; j++) {

rSingleParticle += r(i,j) * r(i,j);
}
argument += sqrt(rSingleParticle);

}
return exp(-argument * alpha);

}

/*
** The function
** ran2()
** is a long periode (> 2 x 10^18) random number generator of
** L’Ecuyer and Bays-Durham shuffle and added safeguards.
** Call with idum a negative integer to initialize; thereafter,
** do not alter idum between sucessive deviates in a
** sequence. RNMX should approximate the largest floating point value
** that is less than 1.
** The function returns a uniform deviate between 0.0 and 1.0
** (exclusive of end-point values).
*/

#define IM1 2147483563
#define IM2 2147483399
#define AM (1.0/IM1)
#define IMM1 (IM1-1)
#define IA1 40014
#define IA2 40692
#define IQ1 53668
#define IQ2 52774
#define IR1 12211
#define IR2 3791
#define NTAB 32
#define NDIV (1+IMM1/NTAB)
#define EPS 1.2e-7
#define RNMX (1.0-EPS)

double ran2(long *idum)
{

int j;
long k;
static long idum2 = 123456789;
static long iy=0;
static long iv[NTAB];
double temp;

if(*idum <= 0) {
if(-(*idum) < 1) *idum = 1;
else *idum = -(*idum);
idum2 = (*idum);
for(j = NTAB + 7; j >= 0; j--) {

k = (*idum)/IQ1;

14



*idum = IA1*(*idum - k*IQ1) - k*IR1;
if(*idum < 0) *idum += IM1;
if(j < NTAB) iv[j] = *idum;

}
iy=iv[0];

}
k = (*idum)/IQ1;
*idum = IA1*(*idum - k*IQ1) - k*IR1;
if(*idum < 0) *idum += IM1;
k = idum2/IQ2;
idum2 = IA2*(idum2 - k*IQ2) - k*IR2;
if(idum2 < 0) idum2 += IM2;
j = iy/NDIV;
iy = iv[j] - idum2;
iv[j] = *idum;
if(iy < 1) iy += IMM1;
if((temp = AM*iy) > RNMX) return RNMX;
else return temp;

}
#undef IM1
#undef IM2
#undef AM
#undef IMM1
#undef IA1
#undef IA2
#undef IQ1
#undef IQ2
#undef IR1
#undef IR2
#undef NTAB
#undef NDIV
#undef EPS
#undef RNMX

// End: function ran2()

#include <iostream>
using namespace std;

int main()
{

VMCSolver *solver = new VMCSolver();
solver->runMonteCarloIntegration();
return 0;

}

The first attempt at solving the Helium atom
Exercises for first lab session, Thursday 22.

• If you have never used git, Qt, armadillo etc, get familiar with them, see
the guides at the official UiO website of the course.

• Study the simple program at this link

• Implement the closed form expression for the local energy and the so-called
quantum force

15

https://github.com/CompPhysics/ComputationalPhysics2/tree/gh-pages/doc/pub/vmc/programs/


• Convince yourself that the closed form expressions are correct. Check both
wave functions

• Implement the closed form expression for the local energy and compare
with a code where the second derivatives are computed numerically.

The Metropolis algorithm
The Metropolis algorithm , see the original article (see also the FYS3150 lec-

tures) was invented by Metropolis et. al and is often simply called the Metropolis
algorithm. It is a method to sample a normalized probability distribution by a
stochastic process. We define P(n)

i to be the probability for finding the system
in the state i at step n. The algorithm is then

• Sample a possible new state j with some probability Ti→j .

• Accept the new state j with probability Ai→j and use it as the next sample.
With probability 1−Ai→j the move is rejected and the original state i is
used again as a sample.

The Metropolis algorithm
We wish to derive the required properties of T and A such that P(n→∞)

i → pi
so that starting from any distribution, the method converges to the correct dis-
tribution. Note that the description here is for a discrete probability distribution.
Replacing probabilities pi with expressions like p(xi)dxi will take all of these
over to the corresponding continuum expressions.

The Metropolis algorithm
The dynamical equation for P(n)

i can be written directly from the description
above. The probability of being in the state i at step n is given by the probability
of being in any state j at the previous step, and making an accepted transition
to i added to the probability of being in the state i, making a transition to any
state j and rejecting the move:

P(n)
i =

∑
j

[
P(n−1)
j Tj→iAj→i + P(n−1)

i Ti→j (1−Ai→j)
]
.

Since the probability of making some transition must be 1,
∑
j Ti→j = 1, and

the above equation becomes

P(n)
i = P(n−1)

i +
∑
j

[
P(n−1)
j Tj→iAj→i − P(n−1)

i Ti→jAi→j

]
.

16

http://scitation.aip.org/content/aip/journal/jcp/21/6/10.1063/1.1699114
http://www.uio.no/studier/emner/matnat/fys/FYS3150/h14/index.html
http://www.uio.no/studier/emner/matnat/fys/FYS3150/h14/index.html


The Metropolis algorithm
For large n we require that P(n→∞)

i = pi, the desired probability distribution.
Taking this limit, gives the balance requirement∑

j

[pjTj→iAj→i − piTi→jAi→j ] = 0 .

The balance requirement is very weak. Typically the much stronger detailed
balance requirement is enforced, that is rather than the sum being set to zero,
we set each term separately to zero and use this to determine the acceptance
probabilities. Rearranging, the result is

Aj→i
Ai→j

= piTi→j
pjTj→i

.

The Metropolis algorithm
The Metropolis choice is to maximize the A values, that is

Aj→i = min
(

1, piTi→j
pjTj→i

)
.

Other choices are possible, but they all correspond to multilplying Ai→j and
Aj→i by the same constant smaller than unity.1

The Metropolis algorithm
Having chosen the acceptance probabilities, we have guaranteed that if the

P(n)
i has equilibrated, that is if it is equal to pi, it will remain equilibrated. Next

we need to find the circumstances for convergence to equilibrium.
The dynamical equation can be written as

P(n)
i =

∑
j

MijP(n−1)
j

with the matrix M given by

Mij = δij

[
1−

∑
k

Ti→kAi→k

]
+ Tj→iAj→i .

Summing over i shows that
∑
iMij = 1, and since

∑
k Ti→k = 1, and Ai→k ≤ 1,

the elements of the matrix satisfy Mij ≥ 0. The matrix M is therefore a
stochastic matrix.

1The penalty function method uses just such a factor to compensate for pi that are evaluated
stochastically and are therefore noisy.

17



The Metropolis algorithm
The Metropolis method is simply the power method for computing the right

eigenvector of M with the largest magnitude eigenvalue. By construction, the
correct probability distribution is a right eigenvector with eigenvalue 1. Therefore,
for the Metropolis method to converge to this result, we must show that M has
only one eigenvalue with this magnitude, and all other eigenvalues are smaller.

Why blocking?
Statistical analysis.

• Monte Carlo simulations can be treated as computer experiments

• The results can be analysed with the same statistical tools as we would
use analysing experimental data.

• As in all experiments, we are looking for expectation values and an estimate
of how accurate they are, i.e., possible sources for errors.

A very good article which explains blocking is H. Flyvbjerg and H. G. Petersen,
Error estimates on averages of correlated data, Journal of Chemical Physics 91,
461-466 (1989).

Why blocking?
Statistical analysis.

• As in other experiments, Monte Carlo experiments have two classes of
errors:

– Statistical errors
– Systematical errors

• Statistical errors can be estimated using standard tools from statistics

• Systematical errors are method specific and must be treated differently
from case to case. (In VMC a common source is the step length or time
step in importance sampling)

Statistics and blocking
The probability distribution function (PDF) is a function p(x) on the domain

which, in the discrete case, gives us the probability or relative frequency with
which these values of X occur:

p(x) = prob(X = x)

18

http://scitation.aip.org/content/aip/journal/jcp/91/1/10.1063/1.457480
http://scitation.aip.org/content/aip/journal/jcp/91/1/10.1063/1.457480


In the continuous case, the PDF does not directly depict the actual probability.
Instead we define the probability for the stochastic variable to assume any value
on an infinitesimal interval around x to be p(x)dx. The continuous function p(x)
then gives us the density of the probability rather than the probability itself. The
probability for a stochastic variable to assume any value on a non-infinitesimal
interval [a, b] is then just the integral:

prob(a ≤ X ≤ b) =
∫ b

a

p(x)dx

Qualitatively speaking, a stochastic variable represents the values of numbers
chosen as if by chance from some specified PDF so that the selection of a large
set of these numbers reproduces this PDF.

Statistics and blocking
Also of interest to us is the cumulative probability distribution function (CDF),

P (x), which is just the probability for a stochastic variable X to assume any
value less than x:

P (x) = Prob(X ≤ x) =
∫ x

−∞
p(x′)dx′

The relation between a CDF and its corresponding PDF is then:

p(x) = d

dx
P (x)

Statistics and blocking
A particularly useful class of special expectation values are the moments. The

n-th moment of the PDF p is defined as follows:

〈xn〉 ≡
∫
xnp(x) dx

The zero-th moment 〈1〉 is just the normalization condition of p. The first
moment, 〈x〉, is called the mean of p and often denoted by the letter µ:

〈x〉 = µ ≡
∫
xp(x) dx

Statistics and blocking
A special version of the moments is the set of central moments, the n-th central

moment defined as:

〈(x− 〈x〉)n〉 ≡
∫

(x− 〈x〉)np(x) dx

19



The zero-th and first central moments are both trivial, equal 1 and 0, respectively.
But the second central moment, known as the variance of p, is of particular
interest. For the stochastic variable X, the variance is denoted as σ2

X or var(X):

σ2
X = var(X) = 〈(x− 〈x〉)2〉 =

∫
(x− 〈x〉)2p(x) dx (1)

=
∫ (

x2 − 2x〈x〉2 + 〈x〉2
)
p(x) dx (2)

= 〈x2〉 − 2〈x〉〈x〉+ 〈x〉2 (3)
= 〈x2〉 − 〈x〉2 (4)

The square root of the variance, σ =
√
〈(x− 〈x〉)2〉 is called the standard

deviation of p. It is clearly just the RMS (root-mean-square) value of the
deviation of the PDF from its mean value, interpreted qualitatively as the spread
of p around its mean.

Statistics and blocking
Another important quantity is the so called covariance, a variant of the

above defined variance. Consider again the set {Xi} of n stochastic variables
(not necessarily uncorrelated) with the multivariate PDF P (x1, . . . , xn). The
covariance of two of the stochastic variables, Xi and Xj , is defined as follows:

cov(Xi, Xj) ≡ 〈(xi − 〈xi〉)(xj − 〈xj〉)〉

=
∫
· · ·
∫

(xi − 〈xi〉)(xj − 〈xj〉)P (x1, . . . , xn) dx1 . . . dxn (5)

with
〈xi〉 =

∫
· · ·
∫
xi P (x1, . . . , xn) dx1 . . . dxn

Statistics and blocking
If we consider the above covariance as a matrix Cij = cov(Xi, Xj), then the

diagonal elements are just the familiar variances, Cii = cov(Xi, Xi) = var(Xi).
It turns out that all the off-diagonal elements are zero if the stochastic variables
are uncorrelated. This is easy to show, keeping in mind the linearity of the
expectation value. Consider the stochastic variables Xi and Xj , (i 6= j):

cov(Xi, Xj) = 〈(xi − 〈xi〉)(xj − 〈xj〉)〉 (6)
= 〈xixj − xi〈xj〉 − 〈xi〉xj + 〈xi〉〈xj〉〉 (7)
= 〈xixj〉 − 〈xi〈xj〉〉 − 〈〈xi〉xj〉+ 〈〈xi〉〈xj〉〉 (8)
= 〈xixj〉 − 〈xi〉〈xj〉 − 〈xi〉〈xj〉+ 〈xi〉〈xj〉 (9)
= 〈xixj〉 − 〈xi〉〈xj〉 (10)

20



Statistics and blocking
IfXi andXj are independent, we get 〈xixj〉 = 〈xi〉〈xj〉, resulting in cov(Xi, Xj) =

0 (i 6= j).
Also useful for us is the covariance of linear combinations of stochastic

variables. Let {Xi} and {Yi} be two sets of stochastic variables. Let also {ai}
and {bi} be two sets of scalars. Consider the linear combination:

U =
∑
i

aiXi V =
∑
j

bjYj

By the linearity of the expectation value

cov(U, V ) =
∑
i,j

aibjcov(Xi, Yj)

Statistics and blocking
Now, since the variance is just var(Xi) = cov(Xi, Xi), we get the variance of

the linear combination U =
∑
i aiXi:

var(U) =
∑
i,j

aiajcov(Xi, Xj) (11)

And in the special case when the stochastic variables are uncorrelated, the
off-diagonal elements of the covariance are as we know zero, resulting in:

var(U) =
∑
i

a2
i cov(Xi, Xi) =

∑
i

a2
i var(Xi)

var(
∑
i

aiXi) =
∑
i

a2
i var(Xi)

which will become very useful in our study of the error in the mean value of a
set of measurements.

Statistics and blocking
A stochastic process is a process that produces sequentially a chain of values:

{x1, x2, . . . xk, . . . }.

We will call these values our measurements and the entire set as our measured
sample. The action of measuring all the elements of a sample we will call a
stochastic experiment since, operationally, they are often associated with results
of empirical observation of some physical or mathematical phenomena; precisely
an experiment. We assume that these values are distributed according to some
PDF pX(x), where X is just the formal symbol for the stochastic variable whose
PDF is pX(x). Instead of trying to determine the full distribution p we are often
only interested in finding the few lowest moments, like the mean µX and the
variance σX .

21



Statistics and blocking
In practical situations a sample is always of finite size. Let that size be n.

The expectation value of a sample, the sample mean, is then defined as follows:

x̄n ≡
1
n

n∑
k=1

xk

The sample variance is:

var(x) ≡ 1
n

n∑
k=1

(xk − x̄n)2

its square root being the standard deviation of the sample. The sample covariance
is:

cov(x) ≡ 1
n

∑
kl

(xk − x̄n)(xl − x̄n)

Statistics and blocking
Note that the sample variance is the sample covariance without the cross

terms. In a similar manner as the covariance in Eq. (??) is a measure of the
correlation between two stochastic variables, the above defined sample covariance
is a measure of the sequential correlation between succeeding measurements of a
sample.

These quantities, being known experimental values, differ significantly from
and must not be confused with the similarly named quantities for stochastic
variables, mean µX , variance var(X) and covariance cov(X,Y ).

Statistics and blocking
The law of large numbers states that as the size of our sample grows to infinity,

the sample mean approaches the true mean µX of the chosen PDF:

lim
n→∞

x̄n = µX

The sample mean x̄n works therefore as an estimate of the true mean µX .
What we need to find out is how good an approximation x̄n is to µX . In

any stochastic measurement, an estimated mean is of no use to us without a
measure of its error. A quantity that tells us how well we can reproduce it in
another experiment. We are therefore interested in the PDF of the sample mean
itself. Its standard deviation will be a measure of the spread of sample means,
and we will simply call it the error of the sample mean, or just sample error,
and denote it by errX . In practice, we will only be able to produce an estimate
of the sample error since the exact value would require the knowledge of the
true PDFs behind, which we usually do not have.

22



Statistics and blocking
The straight forward brute force way of estimating the sample error is simply by

producing a number of samples, and treating the mean of each as a measurement.
The standard deviation of these means will then be an estimate of the original
sample error. If we are unable to produce more than one sample, we can split it
up sequentially into smaller ones, treating each in the same way as above. This
procedure is known as blocking and will be given more attention shortly. At this
point it is worth while exploring more indirect methods of estimation that will
help us understand some important underlying principles of correlational effects.

Statistics and blocking
Let us first take a look at what happens to the sample error as the size of the

sample grows. In a sample, each of the measurements xi can be associated with
its own stochastic variable Xi. The stochastic variable Xn for the sample mean
x̄n is then just a linear combination, already familiar to us:

Xn = 1
n

n∑
i=1

Xi

All the coefficients are just equal 1/n. The PDF of Xn, denoted by pXn
(x) is

the desired PDF of the sample means.

Statistics and blocking
The probability density of obtaining a sample mean x̄n is the product of

probabilities of obtaining arbitrary values x1, x2, . . . , xn with the constraint that
the mean of the set {xi} is x̄n:

pXn
(x) =

∫
pX(x1) · · ·

∫
pX(xn) δ

(
x− x1 + x2 + · · ·+ xn

n

)
dxn · · · dx1

And in particular we are interested in its variance var(Xn).

Statistics and blocking
It is generally not possible to express pXn

(x) in a closed form given an
arbitrary PDF pX and a number n. But for the limit n→∞ it is possible to
make an approximation. The very important result is called the central limit
theorem. It tells us that as n goes to infinity, pXn

(x) approaches a Gaussian
distribution whose mean and variance equal the true mean and variance, µX
and σ2

X , respectively:

lim
n→∞

pXn
(x) =

(
n

2πvar(X)

)1/2
e−

n(x−x̄n)2
2var(X) (12)

23



Statistics and blocking
The desired variance var(Xn), i.e. the sample error squared err2

X , is given by:

err2
X = var(Xn) = 1

n2

∑
ij

cov(Xi, Xj) (13)

We see now that in order to calculate the exact error of the sample with the
above expression, we would need the true means µXi

of the stochastic variables
Xi. To calculate these requires that we know the true multivariate PDF of all
the Xi. But this PDF is unknown to us, we have only got the measurements of
one sample. The best we can do is to let the sample itself be an estimate of the
PDF of each of the Xi, estimating all properties of Xi through the measurements
of the sample.

Statistics and blocking
Our estimate of µXi

is then the sample mean x̄ itself, in accordance with the
the central limit theorem:

µXi
= 〈xi〉 ≈

1
n

n∑
k=1

xk = x̄

Using x̄ in place of µXi
we can give an estimate of the covariance in Eq. (??)

cov(Xi, Xj) = 〈(xi − 〈xi〉)(xj − 〈xj〉)〉 ≈ 〈(xi − x̄)(xj − x̄)〉,

resulting in

1
n

n∑
l

(
1
n

n∑
k

(xk − x̄n)(xl − x̄n)
)

= 1
n

1
n

∑
kl

(xk − x̄n)(xl − x̄n) = 1
n

cov(x)

Statistics and blocking
By the same procedure we can use the sample variance as an estimate of the

variance of any of the stochastic variables Xi

var(Xi) = 〈xi − 〈xi〉〉 ≈ 〈xi − x̄n〉,

which is approximated as

var(Xi) ≈
1
n

n∑
k=1

(xk − x̄n) = var(x) (14)

24



Now we can calculate an estimate of the error errX of the sample mean x̄n:

err2
X = 1

n2

∑
ij

cov(Xi, Xj)

≈ 1
n2

∑
ij

1
n

cov(x) = 1
n2n

2 1
n

cov(x)

= 1
n

cov(x) (15)

which is nothing but the sample covariance divided by the number of measure-
ments in the sample.

Statistics and blocking
In the special case that the measurements of the sample are uncorrelated

(equivalently the stochastic variables Xi are uncorrelated) we have that the off-
diagonal elements of the covariance are zero. This gives the following estimate
of the sample error:

err2
X = 1

n2

∑
ij

cov(Xi, Xj) = 1
n2

∑
i

var(Xi),

resulting in
err2

X ≈
1
n2

∑
i

var(x) = 1
n

var(x) (16)

where in the second step we have used Eq. (??). The error of the sample is
then just its standard deviation divided by the square root of the number of
measurements the sample contains. This is a very useful formula which is easy
to compute. It acts as a first approximation to the error, but in numerical
experiments, we cannot overlook the always present correlations.

Statistics and blocking
For computational purposes one usually splits up the estimate of err2

X , given
by Eq. (??), into two parts

err2
X = 1

n
var(x) + 1

n
(cov(x)− var(x)),

which equals

1
n2

n∑
k=1

(xk − x̄n)2 + 2
n2

∑
k<l

(xk − x̄n)(xl − x̄n) (17)

The first term is the same as the error in the uncorrelated case, Eq. (??). This
means that the second term accounts for the error correction due to correlation
between the measurements. For uncorrelated measurements this second term is
zero.

25



Statistics and blocking
Computationally the uncorrelated first term is much easier to treat efficiently

than the second.

var(x) = 1
n

n∑
k=1

(xk − x̄n)2 =
(

1
n

n∑
k=1

x2
k

)
− x̄2

n

We just accumulate separately the values x2 and x for every measurement x
we receive. The correlation term, though, has to be calculated at the end of
the experiment since we need all the measurements to calculate the cross terms.
Therefore, all measurements have to be stored throughout the experiment.

Statistics and blocking
Let us analyze the problem by splitting up the correlation term into partial

sums of the form:

fd = 1
n− d

n−d∑
k=1

(xk − x̄n)(xk+d − x̄n)

The correlation term of the error can now be rewritten in terms of fd

2
n

∑
k<l

(xk − x̄n)(xl − x̄n) = 2
n−1∑
d=1

fd

The value of fd reflects the correlation between measurements separated by
the distance d in the sample samples. Notice that for d = 0, f is just the
sample variance, var(x). If we divide fd by var(x), we arrive at the so called
autocorrelation function

κd = fd
var(x)

which gives us a useful measure of the correlation pair correlation starting always
at 1 for d = 0.

Statistics and blocking
The sample error (see eq. (??)) can now be written in terms of the autocorre-

lation function:

err2
X = 1

n
var(x) + 2

n
· var(x)

n−1∑
d=1

fd
var(x)

=
(

1 + 2
n−1∑
d=1

κd

)
1
n

var(x)

= τ

n
· var(x) (18)

26



and we see that errX can be expressed in terms the uncorrelated sample vari-
ance times a correction factor τ which accounts for the correlation between
measurements. We call this correction factor the autocorrelation time:

τ = 1 + 2
n−1∑
d=1

κd (19)

Statistics and blocking
For a correlation free experiment, τ equals 1. From the point of view of eq. (??)

we can interpret a sequential correlation as an effective reduction of the number
of measurements by a factor τ . The effective number of measurements becomes:

neff = n

τ

To neglect the autocorrelation time τ will always cause our simple uncorrelated
estimate of err2

X ≈ var(x)/n to be less than the true sample error. The estimate
of the error will be too good. On the other hand, the calculation of the full
autocorrelation time poses an efficiency problem if the set of measurements is
very large.

Can we understand this? Time Auto-correlation Function
The so-called time-displacement autocorrelation φ(t) for a quantityM is given

by
φ(t) =

∫
dt′ [M(t′)− 〈M〉] [M(t′ + t)− 〈M〉] ,

which can be rewritten as

φ(t) =
∫
dt′
[
M(t′)M(t′ + t)− 〈M〉2

]
,

where 〈M〉 is the average value and M(t) its instantaneous value. We can
discretize this function as follows, where we used our set of computed values
M(t) for a set of discretized times (our Monte Carlo cycles corresponding to
moving all electrons?)

φ(t) = 1
tmax − t

tmax−t∑
t′=0

M(t′)M(t′+t)− 1
tmax − t

tmax−t∑
t′=0

M(t′)× 1
tmax − t

tmax−t∑
t′=0

M(t′+t).

Time Auto-correlation Function
One should be careful with times close to tmax, the upper limit of the sums

becomes small and we end up integrating over a rather small time interval.
This means that the statistical error in φ(t) due to the random nature of the
fluctuations inM(t) can become large.

27



One should therefore choose t� tmax.
Note that the variableM can be any expectation values of interest.
The time-correlation function gives a measure of the correlation between the

various values of the variable at a time t′ and a time t′ + t. If we multiply the
values ofM at these two different times, we will get a positive contribution if
they are fluctuating in the same direction, or a negative value if they fluctuate
in the opposite direction. If we then integrate over time, or use the discretized
version of, the time correlation function φ(t) should take a non-zero value if the
fluctuations are correlated, else it should gradually go to zero. For times a long
way apart the different values ofM are most likely uncorrelated and φ(t) should
be zero.

Time Auto-correlation Function
We can derive the correlation time by observing that our Metropolis algorithm

is based on a random walk in the space of all possible spin configurations. Our
probability distribution function ŵ(t) after a given number of time steps t could
be written as

ŵ(t) = Ŵtŵ(0),

with ŵ(0) the distribution at t = 0 and Ŵ representing the transition probability
matrix. We can always expand ŵ(0) in terms of the right eigenvectors of v̂ of
Ŵ as

ŵ(0) =
∑
i

αiv̂i,

resulting in
ŵ(t) = Ŵtŵ(0) = Ŵt

∑
i

αiv̂i =
∑
i

λtiαiv̂i,

with λi the ith eigenvalue corresponding to the eigenvector v̂i.

Time Auto-correlation Function
If we assume that λ0 is the largest eigenvector we see that in the limit t→∞,

ŵ(t) becomes proportional to the corresponding eigenvector v̂0. This is our
steady state or final distribution.

We can relate this property to an observable like the mean energy. With the
probabilty ŵ(t) (which in our case is the squared trial wave function) we can
write the expectation values as

〈M(t)〉 =
∑
µ

ŵ(t)µMµ,

or as the scalar of a vector product

〈M(t)〉 = ŵ(t)m,

with m being the vector whose elements are the values of Mµ in its various
microstates µ.

28



Time Auto-correlation Function
We rewrite this relation as

〈M(t)〉 = ŵ(t)m =
∑
i

λtiαiv̂imi.

If we define mi = v̂imi as the expectation value ofM in the ith eigenstate we
can rewrite the last equation as

〈M(t)〉 =
∑
i

λtiαimi.

Since we have that in the limit t→∞ the mean value is dominated by the the
largest eigenvalue λ0, we can rewrite the last equation as

〈M(t)〉 = 〈M(∞)〉+
∑
i 6=0

λtiαimi.

We define the quantity
τi = − 1

logλi
,

and rewrite the last expectation value as

〈M(t)〉 = 〈M(∞)〉+
∑
i 6=0

αimie
−t/τi .

Time Auto-correlation Function
The quantities τi are the correlation times for the system. They control also

the auto-correlation function discussed above. The longest correlation time is
obviously given by the second largest eigenvalue τ1, which normally defines the
correlation time discussed above. For large times, this is the only correlation time
that survives. If higher eigenvalues of the transition matrix are well separated
from λ1 and we simulate long enough, τ1 may well define the correlation time. In
other cases we may not be able to extract a reliable result for τ1. Coming back
to the time correlation function φ(t) we can present a more general definition
in terms of the mean magnetizations 〈M(t)〉. Recalling that the mean value is
equal to 〈M(∞)〉 we arrive at the expectation values

φ(t) = 〈M(0)−M(∞)〉〈M(t)−M(∞)〉,

resulting in
φ(t) =

∑
i,j 6=0

miαimjαje
−t/τi ,

which is appropriate for all times.

29



Correlation Time
If the correlation function decays exponentially

φ(t) ∼ exp (−t/τ)

then the exponential correlation time can be computed as the average

τexp = −〈 t

log| φ(t)
φ(0) |

〉.

If the decay is exponential, then∫ ∞
0

dtφ(t) =
∫ ∞

0
dtφ(0) exp (−t/τ) = τφ(0),

which suggests another measure of correlation

τint =
∑
k

φ(k)
φ(0) ,

called the integrated correlation time.

What is blocking?
Blocking.

• Say that we have a set of samples from a Monte Carlo experiment

• Assuming (wrongly) that our samples are uncorrelated our best estimate
of the standard deviation of the mean 〈M〉 is given by

σ =
√

1
n

(〈M2〉 − 〈M〉2)

• If the samples are correlated we can rewrite our results to show that

σ =
√

1 + 2τ/∆t
n

(〈M2〉 − 〈M〉2)

where τ is the correlation time (the time between a sample and the next uncor-
related sample) and ∆t is time between each sample

What is blocking?
Blocking.

• If ∆t� τ our first estimate of σ still holds

• Much more common that ∆t < τ

30



• In the method of data blocking we divide the sequence of samples into
blocks

• We then take the mean 〈Mi〉 of block i = 1 . . . nblocks to calculate the total
mean and variance

• The size of each block must be so large that sample j of block i is not
correlated with sample j of block i+ 1

• The correlation time τ would be a good choice

What is blocking?
Blocking.

• Problem: We don’t know τ or it is too expensive to compute

• Solution: Make a plot of std. dev. as a function of blocksize

• The estimate of std. dev. of correlated data is too low → the error will
increase with increasing block size until the blocks are uncorrelated, where
we reach a plateau

• When the std. dev. stops increasing the blocks are uncorrelated

Implementation

• Do a Monte Carlo simulation, storing all samples to file

• Do the statistical analysis on this file, independently of your Monte Carlo
program

• Read the file into an array

• Loop over various block sizes

• For each block size nb, loop over the array in steps of nb taking the mean
of elements inb, . . . , (i+ 1)nb

• Take the mean and variance of the resulting array

• Write the results for each block size to file for later analysis

31



Importance sampling
We need to replace the brute force Metropolis algorithm with a walk in

coordinate space biased by the trial wave function. This approach is based
on the Fokker-Planck equation and the Langevin equation for generating a
trajectory in coordinate space. The link between the Fokker-Planck equation
and the Langevin equations are explained, only partly, in the slides below. An
excellent reference on topics like Brownian motion, Markov chains, the Fokker-
Planck equation and the Langevin equation is the text by Van Kampen Here we
will focus first on the implementation part first.

For a diffusion process characterized by a time-dependent probability density
P (x, t) in one dimension the Fokker-Planck equation reads (for one particle
/walker)

∂P

∂t
= D

∂

∂x

(
∂

∂x
− F

)
P (x, t),

where F is a drift term and D is the diffusion coefficient.

Importance sampling
The new positions in coordinate space are given as the solutions of the Langevin

equation using Euler’s method, namely, we go from the Langevin equation
∂x(t)
∂t

= DF (x(t)) + η,

with η a random variable, yielding a new position

y = x+DF (x)∆t+ ξ
√

∆t,

where ξ is gaussian random variable and ∆t is a chosen time step. The quantity
D is, in atomic units, equal to 1/2 and comes from the factor 1/2 in the kinetic
energy operator. Note that ∆t is to be viewed as a parameter. Values of
∆t ∈ [0.001, 0.01] yield in general rather stable values of the ground state energy.

Importance sampling
The process of isotropic diffusion characterized by a time-dependent probability

density P (x, t) obeys (as an approximation) the so-called Fokker-Planck equation

∂P

∂t
=
∑
i

D
∂

∂xi

(
∂

∂xi
− Fi

)
P (x, t),

where Fi is the ith component of the drift term (drift velocity) caused by an
external potential, and D is the diffusion coefficient. The convergence to a
stationary probability density can be obtained by setting the left hand side to
zero. The resulting equation will be satisfied if and only if all the terms of the
sum are equal zero,

∂2P

∂xi2
= P

∂

∂xi
Fi + Fi

∂

∂xi
P.

32

http://www.elsevier.com/books/stochastic-processes-in-physics-and-chemistry/van-kampen/978-0-444-52965-7


Importance sampling
The drift vector should be of the form F = g(x)∂P∂x . Then,

∂2P

∂xi2
= P

∂g

∂P

(
∂P

∂xi

)2
+ Pg

∂2P

∂x2
i

+ g

(
∂P

∂xi

)2
.

The condition of stationary density means that the left hand side equals zero.
In other words, the terms containing first and second derivatives have to cancel
each other. It is possible only if g = 1

P , which yields

F = 2 1
ΨT
∇ΨT ,

which is known as the so-called quantum force. This term is responsible for
pushing the walker towards regions of configuration space where the trial wave
function is large, increasing the efficiency of the simulation in contrast to the
Metropolis algorithm where the walker has the same probability of moving in
every direction.

Importance sampling
The Fokker-Planck equation yields a (the solution to the equation) transition

probability given by the Green’s function

G(y, x,∆t) = 1
(4πD∆t)3N/2 exp

(
−(y − x−D∆tF (x))2/4D∆t

)
which in turn means that our brute force Metropolis algorithm

A(y, x) = min(1, q(y, x))),

with q(y, x) = |ΨT (y)|2/|ΨT (x)|2 is now replaced by the Metropolis-Hastings
algorithm as well as Hasting’s article,

q(y, x) = G(x, y,∆t)|ΨT (y)|2

G(y, x,∆t)|ΨT (x)|2

Importance sampling, program elements
The full code is this link. Here we include only the parts pertaining to the

computation of the quantum force and the Metropolis update. The program
is a modfication of our previous c++ program discussed previously. Here we
display only the part from the vmcsolver.cpp file. Note the usage of the function
GaussianDeviate.

void VMCSolver::runMonteCarloIntegration()
{

rOld = zeros<mat>(nParticles, nDimensions);
rNew = zeros<mat>(nParticles, nDimensions);

33

http://scitation.aip.org/content/aip/journal/jcp/21/6/10.1063/1.1699114
http://scitation.aip.org/content/aip/journal/jcp/21/6/10.1063/1.1699114
http://biomet.oxfordjournals.org/content/57/1/97.abstract
https://github.com/CompPhysics/ComputationalPhysics2/tree/gh-pages/doc/pub/vmc/programs/c%2B%2B


QForceOld = zeros<mat>(nParticles, nDimensions);
QForceNew = zeros<mat>(nParticles, nDimensions);

double waveFunctionOld = 0;
double waveFunctionNew = 0;

double energySum = 0;
double energySquaredSum = 0;

double deltaE;

// initial trial positions
for(int i = 0; i < nParticles; i++) {

for(int j = 0; j < nDimensions; j++) {
rOld(i,j) = GaussianDeviate(&idum)*sqrt(timestep);

}
}
rNew = rOld;

Importance sampling, program elements

for(int cycle = 0; cycle < nCycles; cycle++) {

// Store the current value of the wave function
waveFunctionOld = waveFunction(rOld);
QuantumForce(rOld, QForceOld); QForceOld = QForceOld*h/waveFunctionOld;
// New position to test
for(int i = 0; i < nParticles; i++) {

for(int j = 0; j < nDimensions; j++) {
rNew(i,j) = rOld(i,j) + GaussianDeviate(&idum)*sqrt(timestep)+QForceOld(i,j)*timestep*D;

}
// for the other particles we need to set the position to the old position since
// we move only one particle at the time
for (int k = 0; k < nParticles; k++) {

if ( k != i) {
for (int j=0; j < nDimensions; j++) {

rNew(k,j) = rOld(k,j);
}

}
}

Importance sampling, program elements

// loop over Monte Carlo cycles
// Recalculate the value of the wave function and the quantum force
waveFunctionNew = waveFunction(rNew);
QuantumForce(rNew,QForceNew) = QForceNew*h/waveFunctionNew;
// we compute the log of the ratio of the greens functions to be used in the
// Metropolis-Hastings algorithm
GreensFunction = 0.0;
for (int j=0; j < nDimensions; j++) {

GreensFunction += 0.5*(QForceOld(i,j)+QForceNew(i,j))*
(D*timestep*0.5*(QForceOld(i,j)-QForceNew(i,j))-rNew(i,j)+rOld(i,j));

}
GreensFunction = exp(GreensFunction);

34



// The Metropolis test is performed by moving one particle at the time
if(ran2(&idum) <= GreensFunction*(waveFunctionNew*waveFunctionNew) / (waveFunctionOld*waveFunctionOld)) {

for(int j = 0; j < nDimensions; j++) {
rOld(i,j) = rNew(i,j);
QForceOld(i,j) = QForceNew(i,j);
waveFunctionOld = waveFunctionNew;

}
} else {

for(int j = 0; j < nDimensions; j++) {
rNew(i,j) = rOld(i,j);
QForceNew(i,j) = QForceOld(i,j);

}
}

Importance sampling, program elements
Note numerical derivatives.

double VMCSolver::QuantumForce(const mat &r, mat &QForce)
{

mat rPlus = zeros<mat>(nParticles, nDimensions);
mat rMinus = zeros<mat>(nParticles, nDimensions);
rPlus = rMinus = r;
double waveFunctionMinus = 0;
double waveFunctionPlus = 0;
double waveFunctionCurrent = waveFunction(r);

// Kinetic energy

double kineticEnergy = 0;
for(int i = 0; i < nParticles; i++) {

for(int j = 0; j < nDimensions; j++) {
rPlus(i,j) += h;
rMinus(i,j) -= h;
waveFunctionMinus = waveFunction(rMinus);
waveFunctionPlus = waveFunction(rPlus);
QForce(i,j) = (waveFunctionPlus-waveFunctionMinus);
rPlus(i,j) = r(i,j);
rMinus(i,j) = r(i,j);

}
}

}

Importance sampling, program elements
The general derivative formula of the Jastrow factor is (the subscript C stands

for Correlation)
1

ΨC

∂ΨC

∂xk
=
k−1∑
i=1

∂gik
∂xk

+
N∑

i=k+1

∂gki
∂xk

However, with our

ΨC =
∏
i<j

g(rij) = exp

∑
i<j

arij
1 + βrij

,
35



the gradient needed for the quantum force and local energy is easy to compute.
We get for particle k

∇kΨC

ΨC
=
∑
j 6=k

rkj
rkj

a

(1 + βrkj)2 ,

which is rather easy to code. Remember to sum over all particles when you
compute the local energy.

Importance sampling, program elements
In the Metropolis/Hasting algorithm, the acceptance ratio determines the

probability for a particle to be accepted at a new position. The ratio of the trial
wave functions evaluated at the new and current positions is given by (D for
determinant part)

R ≡ Ψnew
T

Ψold
T

= Ψnew
D

Ψold
D

Ψnew
C

Ψold
C

Here ΨD is our Slater determinant while ΨC is our correlation function, or Jastrow
factor. We need to optimize the ∇ΨT /ΨT ratio and the second derivative as
well, that is the ∇2ΨT /ΨT ratio. The first is needed when we compute the
so-called quantum force in importance sampling. The second is needed when we
compute the kinetic energy term of the local energy.

∇Ψ
Ψ = ∇(ΨD ΨC)

ΨD ΨC
= ΨC∇ΨD + ΨD∇ΨC

ΨDΨC
= ∇ΨD

ΨD
+ ∇ΨC

ΨC

Importance sampling
The expectation value of the kinetic energy expressed in atomic units for

electron i is
〈K̂i〉 = −1

2
〈Ψ|∇2

i |Ψ〉
〈Ψ|Ψ〉 ,

K̂i = −1
2
∇2
iΨ
Ψ .

Importance sampling
The second derivative which enters the definition of the local energy is

∇2Ψ
Ψ = ∇

2ΨD

ΨD
+ ∇

2ΨC

ΨC
+ 2∇ΨD

ΨD
· ∇ΨC

ΨC

We discuss here how to calculate these quantities in an optimal way,

36



Importance sampling
We have defined the correlated function as

ΨC =
∏
i<j

g(rij) =
N∏
i<j

g(rij) =
N∏
i=1

N∏
j=i+1

g(rij),

with rij = |ri − rj | =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2 in three dimensions
or rij = |ri − rj | =

√
(xi − xj)2 + (yi − yj)2 if we work with two-dimensional

systems.
In our particular case we have

ΨC =
∏
i<j

g(rij) = exp

∑
i<j

f(rij)

 = exp

∑
i<j

arij
1 + βrij

,
Importance sampling

The total number of different relative distances rij is N(N − 1)/2. In a matrix
storage format, the relative distances form a strictly upper triangular matrix

r ≡



0 r1,2 r1,3 · · · r1,N
... 0 r2,3 · · · r2,N
...

... 0
. . .

...
...

...
...

. . . rN−1,N
0 0 0 · · · 0


.

This applies to g = g(rij) as well.
In our algorithm we will move one particle at the time, say the kth-particle.

This sampling will be seen to be particularly efficient when we are going to
compute a Slater determinant.

Importance sampling
We have that the ratio between Jastrow factors RC is given by

RC = Ψnew
C

Ψcur
C

=
k−1∏
i=1

gnew
ik

gcur
ik

N∏
i=k+1

gnew
ki

gcur
ki

.

For the Pade-Jastrow form

RC = Ψnew
C

Ψcur
C

= expUnew
expUcur

= exp ∆U,

where

∆U =
k−1∑
i=1

(
fnew
ik − f cur

ik

)
+

N∑
i=k+1

(
fnew
ki − f cur

ki

)

37



Importance sampling
One needs to develop a special algorithm that runs only through the elements

of the upper triangular matrix g and have k as an index.
The expression to be derived in the following is of interest when computing

the quantum force and the kinetic energy. It has the form

∇iΨC

ΨC
= 1

ΨC

∂ΨC

∂xi
,

for all dimensions and with i running over all particles.

Importance sampling
For the first derivative only N − 1 terms survive the ratio because the g-

terms that are not differentiated cancel with their corresponding ones in the
denominator. Then,

1
ΨC

∂ΨC

∂xk
=
k−1∑
i=1

1
gik

∂gik
∂xk

+
N∑

i=k+1

1
gki

∂gki
∂xk

.

An equivalent equation is obtained for the exponential form after replacing gij
by exp(fij), yielding:

1
ΨC

∂ΨC

∂xk
=
k−1∑
i=1

∂gik
∂xk

+
N∑

i=k+1

∂gki
∂xk

,

with both expressions scaling as O(N).

Importance sampling
Using the identity

∂

∂xi
gij = − ∂

∂xj
gij ,

we get expressions where all the derivatives acting on the particle are represented
by the second index of g:

1
ΨC

∂ΨC

∂xk
=
k−1∑
i=1

1
gik

∂gik
∂xk

−
N∑

i=k+1

1
gki

∂gki
∂xi

,

and for the exponential case:

1
ΨC

∂ΨC

∂xk
=
k−1∑
i=1

∂gik
∂xk

−
N∑

i=k+1

∂gki
∂xi

.

38



Importance sampling
For correlation forms depending only on the scalar distances rij we can use

the chain rule. Noting that

∂gij
∂xj

= ∂gij
∂rij

∂rij
∂xj

= xj − xi
rij

∂gij
∂rij

,

we arrive at

1
ΨC

∂ΨC

∂xk
=
k−1∑
i=1

1
gik

rik

rik

∂gik
∂rik

−
N∑

i=k+1

1
gki

rki

rki

∂gki
∂rki

.

Importance sampling
Note that for the Pade-Jastrow form we can set gij ≡ g(rij) = ef(rij) = efij

and
∂gij
∂rij

= gij
∂fij
∂rij

.

Therefore,
1

ΨC

∂ΨC

∂xk
=
k−1∑
i=1

rik

rik

∂fik
∂rik

−
N∑

i=k+1

rki

rki

∂fki
∂rki

,

where
rij = |rj − ri| = (xj − xi)e1 + (yj − yi)e2 + (zj − zi)e3

is the relative distance.

Importance sampling
When the correlation function is the linear Pade-Jastrow we have

fij = arij
(1 + βrij)

,

which yields the closed form expression

∂fij
∂rij

= a

(1 + βrij)2 .

Importance sampling
The second derivative of the Jastrow factor divided by the Jastrow factor (the

way it enters the kinetic energy) is

[
∇2ΨC

ΨC

]
x

= 2
N∑
k=1

k−1∑
i=1

∂2gik
∂x2

k

+
N∑
k=1

(
k−1∑
i=1

∂gik
∂xk

−
N∑

i=k+1

∂gki
∂xi

)2

39



Importance sampling
But we have a simple form for the function, namely

ΨC =
∏
i<j

exp f(rij) = exp

∑
i<j

arij
1 + βrij

,
and it is easy to see that for particle k we have

∇2
kΨC

ΨC
=
∑
ij 6=k

(rk − ri)(rk − rj)
rkirkj

f ′(rki)f ′(rkj) +
∑
j 6=k

(
f ′′(rkj) + 2

rkj
f ′(rkj)

)

Importance sampling
Using

f(rij) = arij
1 + βrij

,

and g′(rkj) = dg(rkj)/drkj and g′′(rkj) = d2g(rkj)/dr2
kj we find that for particle

k we have

∇2
kΨC

ΨC
=
∑
ij 6=k

(rk − ri)(rk − rj)
rkirkj

a

(1 + βrki)2
a

(1 + βrkj)2 +
∑
j 6=k

(
2a

rkj(1 + βrkj)2 −
2aβ

(1 + βrkj)3

)

Importance sampling
For the correlation part

ΨC =
∏
i<j

g(rij) = exp

∑
i<j

arij
1 + βrij

,
we need to take into account whether electrons have equal or opposite spins
since we have to obey the electron-electron cusp condition as well. When the
electrons have equal spins

a = 1/4,

while for opposite spins (like the ground state in Helium)

a = 1/2

Importance sampling, Fokker-Planck and Langevin equa-
tions

A stochastic process is simply a function of two variables, one is the time, the
other is a stochastic variable X, defined by specifying

• the set {x} of possible values for X;

40



• the probability distribution, wX(x), over this set, or briefly w(x)

The set of values {x} for X may be discrete, or continuous. If the set of
values is continuous, then wX(x) is a probability density so that wX(x)dx is the
probability that one finds the stochastic variable X to have values in the range
[x, x+ dx] .

Importance sampling, Fokker-Planck and Langevin equa-
tions
An arbitrary number of other stochastic variables may be derived from X.

For example, any Y given by a mapping of X, is also a stochastic variable.
The mapping may also be time-dependent, that is, the mapping depends on an
additional variable t

YX(t) = f(X, t).

The quantity YX(t) is called a random function, or, since t often is time, a
stochastic process. A stochastic process is a function of two variables, one is the
time, the other is a stochastic variable X. Let x be one of the possible values of
X then

y(t) = f(x, t),

is a function of t, called a sample function or realization of the process. In
physics one considers the stochastic process to be an ensemble of such sample
functions.

Importance sampling, Fokker-Planck and Langevin equa-
tions

For many physical systems initial distributions of a stochastic variable y tend
to equilibrium distributions: w(y, t)→ w0(y) as t→∞. In equilibrium detailed
balance constrains the transition rates

W (y → y′)w(y) = W (y′ → y)w0(y),

where W (y′ → y) is the probability, per unit time, that the system changes from
a state |y〉 , characterized by the value y for the stochastic variable Y , to a state
|y′〉.

Note that for a system in equilibrium the transition rate W (y′ → y) and the
reverse W (y → y′) may be very different.

Importance sampling, Fokker-Planck and Langevin equa-
tions

Consider, for instance, a simple system that has only two energy levels ε0 = 0
and ε1 = ∆E.

41



For a system governed by the Boltzmann distribution we find (the partition
function has been taken out)

W (0→ 1) exp−(ε0/kT ) = W (1→ 0) exp−(ε1/kT )

We get then
W (1→ 0)
W (0→ 1) = exp−(∆E/kT ),

which goes to zero when T tends to zero.

Importance sampling, Fokker-Planck and Langevin equa-
tions
If we assume a discrete set of events, our initial probability distribution

function can be given by
wi(0) = δi,0,

and its time-development after a given time step ∆t = ε is

wi(t) =
∑
j

W (j → i)wj(t = 0).

The continuous analog to wi(0) is

w(x)→ δ(x),

where we now have generalized the one-dimensional position x to a generic-
dimensional vector x. The Kroenecker δ function is replaced by the δ distribution
function δ(x) at t = 0.

Importance sampling, Fokker-Planck and Langevin equa-
tions
The transition from a state j to a state i is now replaced by a transition

to a state with position y from a state with position x. The discrete sum of
transition probabilities can then be replaced by an integral and we obtain the
new distribution at a time t+ ∆t as

w(y, t+ ∆t) =
∫
W (y, t+ ∆t|x, t)w(x, t)dx,

and after m time steps we have

w(y, t+m∆t) =
∫
W (y, t+m∆t|x, t)w(x, t)dx.

When equilibrium is reached we have

w(y) =
∫
W (y|x, t)w(x)dx,

that is no time-dependence. Note our change of notation for W

42



Importance sampling, Fokker-Planck and Langevin equa-
tions
We can solve the equation for w(y, t) by making a Fourier transform to

momentum space. The PDF w(x, t) is related to its Fourier transform w̃(k, t)
through

w(x, t) =
∫ ∞
−∞

dk exp (ikx)w̃(k, t),

and using the definition of the δ-function

δ(x) = 1
2π

∫ ∞
−∞

dk exp (ikx),

we see that
w̃(k, 0) = 1/2π.

Importance sampling, Fokker-Planck and Langevin equa-
tions
We can then use the Fourier-transformed diffusion equation

∂w̃(k, t)
∂t

= −Dk2w̃(k, t),

with the obvious solution

w̃(k, t) = w̃(k, 0) exp
[
−(Dk2t)

)
= 1

2π exp
[
−(Dk2t)

]
.

Importance sampling, Fokker-Planck and Langevin equa-
tions
With the Fourier transform we obtain

w(x, t) =
∫ ∞
−∞

dk exp [ikx] 1
2π exp

[
−(Dk2t)

]
= 1√

4πDt
exp

[
−(x2/4Dt)

]
,

with the normalization condition∫ ∞
−∞

w(x, t)dx = 1.

Importance sampling, Fokker-Planck and Langevin equa-
tions

The solution represents the probability of finding our random walker at position
x at time t if the initial distribution was placed at x = 0 at t = 0.

There is another interesting feature worth observing. The discrete transition
probability W itself is given by a binomial distribution. The results from the

43



central limit theorem state that transition probability in the limit n → ∞
converges to the normal distribution. It is then possible to show that

W (il − jl, nε)→W (y, t+ ∆t|x, t) = 1√
4πD∆t

exp
[
−((y− x)2/4D∆t)

]
,

and that it satisfies the normalization condition and is itself a solution to the
diffusion equation.

Importance sampling, Fokker-Planck and Langevin equa-
tions
Let us now assume that we have three PDFs for times t0 < t′ < t, that is

w(x0, t0), w(x′, t′) and w(x, t). We have then

w(x, t) =
∫ ∞
−∞

W (x.t|x′.t′)w(x′, t′)dx′,

and
w(x, t) =

∫ ∞
−∞

W (x.t|x0.t0)w(x0, t0)dx0,

and
w(x′, t′) =

∫ ∞
−∞

W (x′.t′|x0, t0)w(x0, t0)dx0.

Importance sampling, Fokker-Planck and Langevin equa-
tions

We can combine these equations and arrive at the famous Einstein-Smoluchenski-
Kolmogorov-Chapman (ESKC) relation

W (xt|x0t0) =
∫ ∞
−∞

W (x, t|x′, t′)W (x′, t′|x0, t0)dx′.

We can replace the spatial dependence with a dependence upon say the velocity
(or momentum), that is we have

W (v, t|v0, t0) =
∫ ∞
−∞

W (v, t|v′, t′)W (v′, t′|v0, t0)dx′.

Importance sampling, Fokker-Planck and Langevin equa-
tions
We will now derive the Fokker-Planck equation. We start from the ESKC

equation

W (x, t|x0, t0) =
∫ ∞
−∞

W (x, t|x′, t′)W (x′, t′|x0, t0)dx′.

44



Define s = t′ − t0, τ = t− t′ and t− t0 = s+ τ . We have then

W (x, s+ τ |x0) =
∫ ∞
−∞

W (x, τ |x′)W (x′, s|x0)dx′.

Importance sampling, Fokker-Planck and Langevin equa-
tions

Assume now that τ is very small so that we can make an expansion in terms
of a small step xi, with x′ = x− ξ, that is

W (x, s|x0) + ∂W

∂s
τ +O(τ2) =

∫ ∞
−∞

W (x, τ |x− ξ)W (x− ξ, s|x0)dx′.

We assume that W (x, τ |x− ξ) takes non-negligible values only when ξ is small.
This is just another way of stating the Master equation!!

Importance sampling, Fokker-Planck and Langevin equa-
tions
We say thus that x changes only by a small amount in the time interval τ .

This means that we can make a Taylor expansion in terms of ξ, that is we expand

W (x, τ |x− ξ)W (x− ξ, s|x0) =
∞∑
n=0

(−ξ)n

n!
∂n

∂xn
[W (x + ξ, τ |x)W (x, s|x0)] .

Importance sampling, Fokker-Planck and Langevin equa-
tions
We can then rewrite the ESKC equation as

∂W

∂s
τ = −W (x, s|x0) +

∞∑
n=0

(−ξ)n

n!
∂n

∂xn

[
W (x, s|x0)

∫ ∞
−∞

ξnW (x + ξ, τ |x)dξ
]
.

We have neglected higher powers of τ and have used that for n = 0 we get simply
W (x, s|x0) due to normalization.

Importance sampling, Fokker-Planck and Langevin equa-
tions
We say thus that x changes only by a small amount in the time interval τ .

This means that we can make a Taylor expansion in terms of ξ, that is we expand

W (x, τ |x− ξ)W (x− ξ, s|x0) =
∞∑
n=0

(−ξ)n

n!
∂n

∂xn
[W (x + ξ, τ |x)W (x, s|x0)] .

45



Importance sampling, Fokker-Planck and Langevin equa-
tions
We can then rewrite the ESKC equation as

∂W (x, s|x0)
∂s

τ = −W (x, s|x0)+
∞∑
n=0

(−ξ)n

n!
∂n

∂xn

[
W (x, s|x0)

∫ ∞
−∞

ξnW (x + ξ, τ |x)dξ
]
.

We have neglected higher powers of τ and have used that for n = 0 we get simply
W (x, s|x0) due to normalization.

Importance sampling, Fokker-Planck and Langevin equa-
tions
We simplify the above by introducing the moments

Mn = 1
τ

∫ ∞
−∞

ξnW (x + ξ, τ |x)dξ = 〈[∆x(τ)]n〉
τ

,

resulting in

∂W (x, s|x0)
∂s

=
∞∑
n=1

(−ξ)n

n!
∂n

∂xn
[W (x, s|x0)Mn] .

Importance sampling, Fokker-Planck and Langevin equa-
tions
When τ → 0 we assume that 〈[∆x(τ)]n〉 → 0 more rapidly than τ itself if

n > 2. When τ is much larger than the standard correlation time of system then
Mn for n > 2 can normally be neglected. This means that fluctuations become
negligible at large time scales.

If we neglect such terms we can rewrite the ESKC equation as

∂W (x, s|x0)
∂s

= −∂M1W (x, s|x0)
∂x

+ 1
2
∂2M2W (x, s|x0)

∂x2 .

Importance sampling, Fokker-Planck and Langevin equa-
tions
In a more compact form we have

∂W

∂s
= −∂M1W

∂x
+ 1

2
∂2M2W

∂x2 ,

which is the Fokker-Planck equation! It is trivial to replace position with velocity
(momentum).

46



Importance sampling, Fokker-Planck and Langevin equa-
tions
Langevin equation. Consider a particle suspended in a liquid. On its path
through the liquid it will continuously collide with the liquid molecules. Because
on average the particle will collide more often on the front side than on the back
side, it will experience a systematic force proportional with its velocity, and
directed opposite to its velocity. Besides this systematic force the particle will
experience a stochastic force F(t). The equations of motion are

• dr
dt = v and

• dv
dt = −ξv + F.

Importance sampling, Fokker-Planck and Langevin equa-
tions
Langevin equation. From hydrodynamics we know that the friction constant
ξ is given by

ξ = 6πηa/m
where η is the viscosity of the solvent and a is the radius of the particle .

Solving the second equation in the previous slide we get

v(t) = v0e
−ξt +

∫ t

0
dτe−ξ(t−τ)F(τ).

Importance sampling, Fokker-Planck and Langevin equa-
tions
Langevin equation. If we want to get some useful information out of this,
we have to average over all possible realizations of F(t), with the initial velocity
as a condition. A useful quantity for example is

〈v(t) · v(t)〉v0 = v−ξ2t0 + 2
∫ t

0
dτe−ξ(2t−τ)v0 · 〈F(τ)〉v0

+
∫ t

0
dτ ′
∫ t

0
dτe−ξ(2t−τ−τ

′)〈F(τ) · F(τ ′)〉v0 .

Importance sampling, Fokker-Planck and Langevin equa-
tions
Langevin equation. In order to continue we have to make some assump-
tions about the conditional averages of the stochastic forces. In view of the
chaotic character of the stochastic forces the following assumptions seem to be
appropriate

〈F(t)〉 = 0,

47



and
〈F(t) · F(t′)〉v0 = Cv0δ(t− t′).

We omit the subscript v0, when the quantity of interest turns out to be
independent of v0. Using the last three equations we get

〈v(t) · v(t)〉v0 = v2
0e
−2ξt + Cv0

2ξ (1− e−2ξt).

For large t this should be equal to 3kT/m, from which it follows that

〈F(t) · F(t′)〉 = 6kT
m
ξδ(t− t′).

This result is called the fluctuation-dissipation theorem .

Importance sampling, Fokker-Planck and Langevin equa-
tions
Langevin equation. Integrating

v(t) = v0e
−ξt +

∫ t

0
dτe−ξ(t−τ)F(τ),

we get

r(t) = r0 + v0
1
ξ

(1− e−ξt) +
∫ t

0
dτ

∫ τ

0
τ ′e−ξ(τ−τ

′)F(τ ′),

from which we calculate the mean square displacement

〈(r(t)− r0)2〉v0 = v2
0
ξ

(1− e−ξt)2 + 3kT
mξ2 (2ξt− 3 + 4e−ξt − e−2ξt).

Importance sampling, Fokker-Planck and Langevin equa-
tions
Langevin equation. For very large t this becomes

〈(r(t)− r0)2〉 = 6kT
mξ

t

from which we get the Einstein relation

D = kT

mξ

where we have used 〈(r(t)− r0)2〉 = 6Dt.

48



Efficient calculation of Slater determinants

• Repetition about many-body expectation values

• Construction of the Slater determinant

• Thursday March 19 we will discuss parallelization and hints and tricks for
efficient coding

You should start to implement the calculation of the Slater determinants. Start
with the beryllium atom and continue with the neon atom. Together with
parallelization, these are the tasks of project 2. The pdf file and latex files are
found in the folders

Efficient calculation of Slater determinants
The potentially most time-consuming part is the evaluation of the gradient

and the Laplacian of an N -particle Slater determinant.
We have to differentiate the determinant with respect to all spatial coordinates

of all particles. A brute force differentiation would involve N · d evaluations of
the entire determinant which would even worsen the already undesirable time
scaling, making it Nd ·O(N3) ∼ O(d ·N4).

This poses serious hindrances to the overall efficiency of our code.

Matrix elements of Slater determinants
The efficiency can be improved however if we move only one electron at the

time. The Slater determinant matrix D̂ is defined by the matrix elements

dij = φj(xi)

where φj(ri) is a single particle wave function. The columns correspond to
the position of a given particle while the rows stand for the various quantum
numbers.

Efficient calculation of Slater determinants
What we need to realize is that when differentiating a Slater determinant

with respect to some given coordinate, only one row of the corresponding Slater
matrix is changed.

Therefore, by recalculating the whole determinant we risk producing redun-
dant information. The solution turns out to be an algorithm that requires to
keep track of the inverse of the Slater matrix.

49



Efficient calculation of Slater determinants
Let the current position in phase space be represented by the (N · d)-element

vector rold and the new suggested position by the vector rnew.
The inverse of D̂ can be expressed in terms of its cofactors Cij and its

determinant (this our notation for a determinant) |D̂|:

d−1
ij = Cji

|D̂|
(20)

Notice that the interchanged indices indicate that the matrix of cofactors is to
be transposed.

Efficient calculation of Slater determinants
If D̂ is invertible, then we must obviously have D̂−1D̂ = 1, or explicitly in

terms of the individual elements of D̂ and D̂−1:
N∑
k=1

dikd
−1
kj = δij (21)

Efficient calculation of Slater determinants
Consider the ratio, which we shall call R, between |D̂(rnew)| and |D̂(rold)|.

By definition, each of these determinants can individually be expressed in terms
of the i-th row of its cofactor matrix

R ≡ |D̂(rnew)|
|D̂(rold)|

=
∑N
j=1 dij(rnew)Cij(rnew)∑N
j=1 dij(rold)Cij(rold)

(22)

Efficient calculation of Slater determinants
Suppose now that we move only one particle at a time, meaning that rnew

differs from rold by the position of only one, say the i-th, particle . This means
that D̂(rnew) and D̂(rold) differ only by the entries of the i-th row. Recall also
that the i-th row of a cofactor matrix Ĉ is independent of the entries of the i-th
row of its corresponding matrix D̂. In this particular case we therefore get that
the i-th row of Ĉ(rnew) and Ĉ(rold) must be equal. Explicitly, we have:

Cij(rnew) = Cij(rold) ∀ j ∈ {1, . . . , N} (23)

Efficient calculation of Slater determinants
Inserting this into the numerator of eq. (??) and using eq. (??) to substitute

the cofactors with the elements of the inverse matrix, we get:

R =
∑N
j=1 dij(rnew)Cij(rold)∑N
j=1 dij(rold)Cij(rold)

=
∑N
j=1 dij(rnew) d−1

ji (rold)∑N
j=1 dij(rold) d−1

ji (rold)
(24)

50



Efficient calculation of Slater determinants
Now by eq. (??) the denominator of the rightmost expression must be unity,

so that we finally arrive at:

R =
N∑
j=1

dij(rnew) d−1
ji (rold) =

N∑
j=1

φj(rnew
i ) d−1

ji (rold) (25)

What this means is that in order to get the ratio when only the i-th parti-
cle has been moved, we only need to calculate the dot product of the vector
(φ1(rnew

i ), . . . , φN (rnew
i )) of single particle wave functions evaluated at this new

position with the i-th column of the inverse matrix D̂−1 evaluated at the original
position. Such an operation has a time scaling of O(N). The only extra thing
we need to do is to maintain the inverse matrix D̂−1(xold).

Efficient calculation of Slater determinants
If the new position rnew is accepted, then the inverse matrix can by suitably

updated by an algorithm having a time scaling of O(N2). This algorithm goes
as follows. First we update all but the i-th column of D̂−1. For each column
j 6= i, we first calculate the quantity:

Sj = (D̂(rnew)× D̂−1(rold))ij =
N∑
l=1

dil(rnew) d−1
lj (rold) (26)

Efficient calculation of Slater determinants
The new elements of the j-th column of D̂−1 are then given by:

d−1
kj (rnew) = d−1

kj (rold)− Sj
R
d−1
ki (rold) ∀ k ∈ {1, . . . , N}

j 6= i
(27)

Efficient calculation of Slater determinants
Finally the elements of the i-th column of D̂−1 are updated simply as follows:

d−1
ki (rnew) = 1

R
d−1
ki (rold) ∀ k ∈ {1, . . . , N} (28)

We see from these formulas that the time scaling of an update of D̂−1 after
changing one row of D̂ is O(N2).

The scheme is also applicable for the calculation of the ratios involving
derivatives. It turns out that differentiating the Slater determinant with respect
to the coordinates of a single particle ri changes only the i-th row of the
corresponding Slater matrix.

51



The gradient and the Laplacian
The gradient and the Laplacian can therefore be calculated as follows:

~∇i|D̂(r)|
|D̂(r)|

=
N∑
j=1

~∇idij(r)d−1
ji (r) =

N∑
j=1

~∇iφj(ri)d−1
ji (r)

and
∇2
i |D̂(r)|
|D̂(r)|

=
N∑
j=1
∇2
i dij(r)d−1

ji (r) =
N∑
j=1
∇2
iφj(ri) d−1

ji (r)

How to compute the derivates of the Slater determinant
Thus, to calculate all the derivatives of the Slater determinant, we only need

the derivatives of the single particle wave functions (~∇iφj(ri) and ∇2
iφj(ri)) and

the elements of the corresponding inverse Slater matrix (D̂−1(ri)). A calculation
of a single derivative is by the above result an O(N) operation. Since there are
d · N derivatives, the time scaling of the total evaluation becomes O(d · N2).
With an O(N2) updating algorithm for the inverse matrix, the total scaling is
no worse, which is far better than the brute force approach yielding O(d ·N4).

Important note: In most cases you end with closed form expressions for
the single-particle wave functions. It is then useful to calculate the various
derivatives and make separate functions for them.

The Slater determinant
The Slater determinant takes the form

Φ(r1, r2, , r3, r4, α, β, γ, δ) = 1√
4!

∣∣∣∣∣∣∣∣
ψ100↑(r1) ψ100↑(r2) ψ100↑(r3) ψ100↑(r4)
ψ100↓(r1) ψ100↓(r2) ψ100↓(r3) ψ100↓(r4)
ψ200↑(r1) ψ200↑(r2) ψ200↑(r3) ψ200↑(r4)
ψ200↓(r1) ψ200↓(r2) ψ200↓(r3) ψ200↓(r4)

∣∣∣∣∣∣∣∣ .
The Slater determinant as written is zero since the spatial wave functions for the
spin up and spin down states are equal. But we can rewrite it as the product of
two Slater determinants, one for spin up and one for spin down.

Rewriting the Slater determinant
We can rewrite it as

Φ(r1, r2, , r3, r4, α, β, γ, δ) = det ↑ (1, 2) det ↓ (3, 4)− det ↑ (1, 3) det ↓ (2, 4)

−det ↑ (1, 4) det ↓ (3, 2) + det ↑ (2, 3) det ↓ (1, 4)− det ↑ (2, 4) det ↓ (1, 3)

+ det ↑ (3, 4) det ↓ (1, 2),

52



where we have defined

det ↑ (1, 2) = 1√
2

∣∣∣∣ ψ100↑(r1) ψ100↑(r2)
ψ200↑(r1) ψ200↑(r2)

∣∣∣∣ ,
and

det ↓ (3, 4) = 1√
2

∣∣∣∣ ψ100↓(r3) ψ100↓(r4)
ψ200↓(r3) ψ200↓(r4)

∣∣∣∣ .
The total determinant is still zero!

Splitting the Slater determinant
We want to avoid to sum over spin variables, in particular when the interaction

does not depend on spin.
It can be shown, see for example Moskowitz and Kalos, Int. J. Quantum

Chem. 20 1107 (1981), that for the variational energy we can approximate the
Slater determinant as

Φ(r1, r2, , r3, r4, α, β, γ, δ) ∝ det ↑ (1, 2) det ↓ (3, 4),

or more generally as

Φ(r1, r2, . . . rN ) ∝ det ↑ det ↓,

where we have the Slater determinant as the product of a spin up part involving
the number of electrons with spin up only (2 for beryllium and 5 for neon) and
a spin down part involving the electrons with spin down.

This ansatz is not antisymmetric under the exchange of electrons with
opposite spins but it can be shown (show this) that it gives the same expectation
value for the energy as the full Slater determinant.

As long as the Hamiltonian is spin independent, the above is correct. It is
rather straightforward to see this if you go back to the equations for the energy
discussed earlier this semester.

Spin up and spin down parts
We will thus factorize the full determinant |D̂| into two smaller ones, where

each can be identified with ↑ and ↓ respectively:

|D̂| = |D̂|↑ · |D̂|↓

Factorization
The combined dimensionality of the two smaller determinants equals the

dimensionality of the full determinant. Such a factorization is advantageous

53

http://onlinelibrary.wiley.com/doi/10.1002/qua.560200508/abstract
http://onlinelibrary.wiley.com/doi/10.1002/qua.560200508/abstract


in that it makes it possible to perform the calculation of the ratio R and the
updating of the inverse matrix separately for |D̂|↑ and |D̂|↓:

|D̂|new

|D̂|old
=
|D̂|new
↑

|D̂|old
↑
·
|D̂|new
↓

|D̂|old
↓

This reduces the calculation time by a constant factor. The maximal time
reduction happens in a system of equal numbers of ↑ and ↓ particles, so that the
two factorized determinants are half the size of the original one.

Number of operations
Consider the case of moving only one particle at a time which originally had

the following time scaling for one transition:

OR(N) +Oinverse(N2)

For the factorized determinants one of the two determinants is obviously unaf-
fected by the change so that it cancels from the ratio R.

Counting the number of FLOPS
Therefore, only one determinant of size N/2 is involved in each calculation of

R and update of the inverse matrix. The scaling of each transition then becomes:

OR(N/2) +Oinverse(N2/4)

and the time scaling when the transitions for all N particles are put together:

OR(N2/2) +Oinverse(N3/4)

which gives the same reduction as in the case of moving all particles at once.

Computation of ratios
Computing the ratios discussed above requires that we maintain the inverse

of the Slater matrix evaluated at the current position. Each time a trial position
is accepted, the row number i of the Slater matrix changes and updating its
inverse has to be carried out. Getting the inverse of an N × N matrix by
Gaussian elimination has a complexity of order of O(N3) operations, a luxury
that we cannot afford for each time a particle move is accepted. We will use the
expression

d−1
kj (xnew) =


d−1
kj (xold)− d−1

ki
(xold)
R

∑N
l=1 dil(xnew)d−1

lj (xold) if j 6= i

d−1
ki

(xold)
R

∑N
l=1 dil(xold)d−1

lj (xold) if j = i

54



Scaling properties
This equation scales as O(N2). The evaluation of the determinant of an N×N

matrix by standard Gaussian elimination requires O(N3) calculations. As there
are Nd independent coordinates we need to evaluate Nd Slater determinants for
the gradient (quantum force) and Nd for the Laplacian (kinetic energy). With
the updating algorithm we need only to invert the Slater determinant matrix
once. This can be done by standard LU decomposition methods.

How to get the determinant
Determining a determinant of an N ×N matrix by standard Gaussian elim-

ination is of the order of O(N3) calculations. As there are N · d independent
coordinates we need to evaluate Nd Slater determinants for the gradient (quan-
tum force) and N · d for the Laplacian (kinetic energy)

With the updating algorithm we need only to invert the Slater determinant
matrix once. This is done by calling standard LU decomposition methods.

If you choose to implement the above recipe for the computation of the Slater
determinant, you need to LU decompose the Slater matrix. This is described in
chapter 6 of the lecture notes from FYS3150.

You need to call the function ludcmp in lib.cpp. You need to transfer the
Slater matrix and its dimension. You get back an LU decomposed matrix.

LU decomposition and determinant
The LU decomposition method means that we can rewrite this matrix as the

product of two matrices B̂ and Ĉ where
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 =


1 0 0 0
b21 1 0 0
b31 b32 1 0
b41 b42 b43 1




c11 c12 c13 c14
0 c22 c23 c24
0 0 c33 c34
0 0 0 c44

 .

Determinant of a matrix
The matrix Â ∈ Rn×n has an LU factorization if the determinant is different

from zero. If the LU factorization exists and Â is non-singular, then the LU
factorization is unique and the determinant is given by

|Â| = c11c22 . . . cnn.

Expectation value of the kinetic energy
The expectation value of the kinetic energy expressed in atomic units for

electron i is
〈K̂i〉 = −1

2
〈Ψ|∇2

i |Ψ〉
〈Ψ|Ψ〉 ,

55



Ki = −1
2
∇2
iΨ
Ψ . (29)

∇2Ψ
Ψ = ∇

2(ΨD ΨC)
ΨD ΨC

= ∇ · [∇(ΨD ΨC)]
ΨD ΨC

= ∇ · [ΨC∇ΨD + ΨD∇ΨC ]
ΨD ΨC

= ∇ΨC · ∇ΨD + ΨC∇2ΨD +∇ΨD · ∇ΨC + ΨD∇2ΨC

ΨD ΨC

(30)

∇2Ψ
Ψ = ∇

2ΨD

ΨD
+ ∇

2ΨC

ΨC
+ 2∇ΨD

ΨD
· ∇ΨC

ΨC
(31)

Second derivative of the Jastrow factor
The second derivative of the Jastrow factor divided by the Jastrow factor (the

way it enters the kinetic energy) is

[
∇2ΨC

ΨC

]
x

= 2
N∑
k=1

k−1∑
i=1

∂2gik
∂x2

k

+
N∑
k=1

(
k−1∑
i=1

∂gik
∂xk

−
N∑

i=k+1

∂gki
∂xi

)2

Functional form
But we have a simple form for the function, namely

ΨC =
∏
i<j

exp f(rij) = exp

∑
i<j

arij
1 + βrij

,
and it is easy to see that for particle k we have

∇2
kΨC

ΨC
=
∑
ij 6=k

(rk − ri)(rk − rj)
rkirkj

f ′(rki)f ′(rkj) +
∑
j 6=k

(
f ′′(rkj) + 2

rkj
f ′(rkj)

)

Second derivative of the Jastrow factor
Using

f(rij) = arij
1 + βrij

,

and g′(rkj) = dg(rkj)/drkj and g′′(rkj) = d2g(rkj)/dr2
kj we find that for particle

k we have

∇2
kΨC

ΨC
=
∑
ij 6=k

(rk − ri)(rk − rj)
rkirkj

a

(1 + βrki)2
a

(1 + βrkj)2 +
∑
j 6=k

(
2a

rkj(1 + βrkj)2 −
2aβ

(1 + βrkj)3

)

56



Gradient and Laplacian
The gradient and Laplacian can be calculated as follows:

∇i|D̂(r)|
|D̂(r)|

=
N∑
j=1

~∇idij(r) d−1
ji (r) =

N∑
j=1

~∇iφj(ri) d−1
ji (r)

and
∇2
i |D̂(r)|
|D̂(r)|

=
N∑
j=1
∇2
i dij(r) d−1

ji (r) =
N∑
j=1
∇2
iφj(ri) d−1

ji (r)

The gradient for the determinant
The gradient for the determinant is

∇i|D̂(r)|
|D̂(r)|

=
N∑
j=1
∇idij(r) d−1

ji (r) =
N∑
j=1
∇iφj(ri) d−1

ji (r).

Jastrow gradient in quantum force
We have

ΨC =
∏
i<j

g(rij) = exp

∑
i<j

arij
1 + βrij

,
the gradient needed for the quantum force and local energy is easy to compute.
We get for particle k

∇kΨC

ΨC
=
∑
j 6=k

rkj
rkj

a

(1 + βrkj)2 ,

which is rather easy to code. Remember to sum over all particles when you
compute the local energy.

Metropolis Hastings part
We need to compute the ratio between wave functions, in particular for the

Slater determinants.

R =
N∑
j=1

dij(rnew) d−1
ji (rold) =

N∑
j=1

φj(rnew
i ) d−1

ji (rold)

What this means is that in order to get the ratio when only the i-th parti-
cle has been moved, we only need to calculate the dot product of the vector
(φ1(rnew

i ), . . . , φN (rnew
i )) of single particle wave functions evaluated at this new

position with the i-th column of the inverse matrix D̂−1 evaluated at the original
position. Such an operation has a time scaling of O(N). The only extra thing
we need to do is to maintain the inverse matrix D̂−1(xold).

57



Single-particle states
The 1s hydrogen like wave function

R10(r) = 2
(
Z

a0

)3/2
exp (−Zr/a0) = u10/r

The total energy for helium (not the Hartree or Fock terms) from the direct and
the exchange term should give 5Z/8.

The single-particle energy with no interactions should give −Z2/2n2.

Single-particle states
The 2s hydrogen-like wave function is

R20(r) = 2
(
Z

2a0

)3/2(
1− Zr

2a0

)
exp (−Zr/2a0) = u20/r

and the 2p hydrogen -like wave function is

R21(r) = 1√
3

(
Z

2a0

)3/2
Zr

a0
exp (−Zr/2a0) = u21/r

We use a0 = 1.

Problems with neon states for VMC
In the standard textbook case one uses spherical coordinates in order to get

the hydrogen-like wave functions

x = rsinθcosφ,

y = rsinθsinφ,

and
z = rcosθ.

Problems with neon states for VMC
The reason we introduce spherical coordinates is the spherical symmetry of

the Coulomb potential

e2

4πε0r
= e2

4πε0
√
x2 + y2 + z2

,

where we have used r =
√
x2 + y2 + z2. It is not possible to find a separable

solution of the type
ψ(x, y, z) = ψ(x)ψ(y)ψ(z).

However, with spherical coordinates we can find a solution of the form

ψ(r, θ, φ) = R(r)P (θ)F (φ).

58



Spherical harmonics
The angle-dependent differential equations result in the spherical harmonic

functions as solutions, with quantum numbers l and ml. These functions are
given by

Ylml
(θ, φ) = P (θ)F (φ) =

√
(2l + 1)(l −ml)!

4π(l +ml)!
Pml

l (cos(θ)) exp (imlφ),

with Pml

l being the associated Legendre polynomials They can be rewritten as

Ylml
(θ, φ) = sin|ml|(θ)× (polynom(cosθ)) exp (imlφ),

Examples of spherical harmonics
We have the following selected examples

Y00 =
√

1
4π ,

for l = ml = 0,

Y10 =
√

3
4π cos(θ),

for l = 1 og ml = 0,

Y1±1 =
√

3
8π sin(θ)exp(±iφ),

for l = 1 og ml = ±1.

Problems with spherical harmonics
A problem with the spherical harmonics is that they are complex. The

introduction of solid harmonics allows the use of real orbital wave-functions for
a wide range of applications. The complex solid harmonics Ylml

(r) are related
to the spherical harmonics Ylml

(r) through

Ylml
(r) = rlYlml

(r).

By factoring out the leading r-dependency of the radial-function

Rnl(r) = r−lRnl(r),

we obtain
Ψnlml

(r, θ, φ) = Rnl(r) · Ylml
(r).

59



Real solid harmonics
For the theoretical development of the real solid harmonics we first express

the complex solid harmonics, Clml
, by (complex) Cartesian coordinates, and

arrive at the real solid harmonics, Slml
, through the unitary transformation(

Slml

Sl,−ml

)
= 1√

2

(
(−1)ml 1
−(−1)ml i i

)(
Clml

Cl,−ml

)
.

Solid harmonics
This transformation will not alter any physical quantities that are degenerate

in the subspace consisting of opposite magnetic quantum numbers (the angular
momentum l is equal for both these cases). This means for example that the
above transformation does not alter the energies, unless an external magnetic
field is applied to the system. Henceforth, we will use the solid harmonics, and
note that changing the spherical potential beyond the Coulomb potential will
not alter the solid harmonics.

Relation between solid harmonics and spherical harmonics
We have defined

Ylml
(r) = rlYlml

(r).
The real-valued spherical harmonics are defined as

Sl0 =
√

4π
2l + 1Yl0(r),

Slml
= (−1)ml

√
8π

2l + 1ReYl0(r),

Slml
= (−1)ml

√
8π

2l + 1ImYl0(r),

for ml > 0.

The lowest-order real solid harmonics

ml\l 0 1 2 3
+3 1

2

√
5
2 (x2 − 3y2)x

+2 1
2
√

3(x2 − y2) 1
2
√

15(x2 − y2)z
+1 x

√
3xz 1

2

√
3
2 (5z2 − r2)x

0 y 1
2 (3z2 − r2) 1

2 (5z2 − 3r2)x
-1 z

√
3yz 1

2

√
3
2 (5z2 − r2)y

-2
√

3xy
√

15xyz
-3 1

2

√
5
2 (3x2 − y2)y

60


