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Second quantization

Second quantization

» Second quantization and operators, two-body operator with
examples

» Wick's theorem

» Thouless’ theorem and analysis of the Hartree-Fock equations
using second quantization

» Examples on how to use bit representations for Slater
determinants



Second quantization

We introduce the time-independent operators al, and a, which
create and annihilate, respectively, a particle in the single-particle
state .. We define the fermion creation operator al,

al|0) = |a), (1)

and
allar...ap)as = |aar ... ap)as (2)



Second quantization

In Eq. (1) the operator al, acts on the vacuum state |0), which

does not contain any particles. Alternatively, we could define a
closed-shell nucleus or atom as our new vacuum, but then we need
to introduce the particle-hole formalism, see the discussion to come.
In Eq. (2) al, acts on an antisymmetric n-particle state and creates
an antisymmetric (n + 1)-particle state, where the one-body state
Y« is occupied, under the condition that a # ag, an, ..., a,. It
follows that we can express an antisymmetric state as the product
of the creation operators acting on the vacuum state.

log ... ap)as = a)., al .aLn\0> (3)

a1 9 * -



Second quantization

It is easy to derive the commutation and anticommutation rules for
the fermionic creation operators al. Using the antisymmetry of the
states (3)

log . .aj . caphas = —|aa .. k.. QL) AS (4)
we obtain
ahah, = —ahal, ®)



Second quantization

Using the Pauli principle
log...aj...aj...apjas =0

it follows that
aL‘,agi =0.

If we combine Egs. (5) and (7), we obtain the well-known
anti-commutation rule

aLaL + aLaL = {al, a}'g} =0



Second quantization

The hermitian conjugate of al, is
o = (‘%)Jr
If we take the hermitian conjugate of Eq. (8), we arrive at

{3047 aﬁ} =0



Second quantization

What is the physical interpretation of the operator a, and what is
the effect of a,, on a given state |ayan ... ap)as? Consider the
following matrix element

<061042--'04n|3a|a/10/2'--04n> (11)

where both sides are antisymmetric. We distinguish between two
cases. The first (1) is when o € {e;}. Using the Pauli principle of
Eq. (6) it follows
(qan...aplag =0 (12)
The second (2) case is when a ¢ {«;}. It follows that an hermitian
conjugation
(i ... aplag = (aagag . ..y (13)



Second quantization

Eq. (13) holds for case (1) since the lefthand side is zero due to the
Pauli principle. We write Eq. (11) as

(a1ag ... aplaglafay ... al) = (arag .. apladial ... al,) (14)

Here we must have m = n+ 1 if Eq. (14) has to be trivially
different from zero.



Second quantization

For the last case, the minus and plus signs apply when the sequence
o,a1,Q2,...,0p and of,ah,. .., ) are related to each other via
even and odd permutations. If we assume that o ¢ {a;} we obtain

(qan...aplaglaias . ..o 1) =0 (15)
when a € {a/}. If a ¢ {a/}, we obtain

30 0105 . O y1) ke =0 (16)
\—v—’

and in particular
a,|0) =0 (17)



Second quantization

If {acrj} = {c}, performing the right permutations, the sequence
o, 1,2, .., 0, is identical with the sequence af, a5, ..., o) ;.
This results in

(1ag ... aplaglacian ...ap) =1 (18)

and thus
ao|acian ... .ap) = |aias ... ap) (19)



Second quantization

The action of the operator a,, from the left on a state vector is to
remove one particle in the state o. If the state vector does not
contain the single-particle state «, the outcome of the operation is
zero. The operator a,, is normally called for a destruction or
annihilation operator.

The next step is to establish the commutator algebra of al, and ag.



Second quantization

The action of the anti-commutator {aly,a,} on a given n-particle
state is

aLaa oo ...ap) =0
—_——

#a
aaajl liaa .. ap) = ag laaiaz ... ap) = |araz ... ap) (20)
#a Fo 72;

if the single-particle state « is not contained in the state.



Second quantization

If it is present we arrive at

al anlaran .. agaoyy .. ap-1) = alaa(—1) |laatas . .o 1)
= (—l)k\aalag N an_1> = \041042 OO0y T a,,_l)

aaaglalag e Oy .. 1) =0 (21)
From Egs. (20) and (21) we arrive at

{al, a0} = alan + aal, = 1 (22)



Second quantization

The action of {a&, ag}, with e ## 3 on a given state yields three

possibilities. The first case is a state vector which contains both «
and S, then either o or 8 and finally none of them.



Second quantization

The first case results in

aLaﬂaﬁalag NN Oz,,,2> =0
agaL|aﬁa1a2 NN Oz,,,2> =0 (23)

while the second case gives

alaglBoraz...ap 1) = |aaraz...an 1)
#a I
aﬁé‘ilﬁalaz-..an_ﬂ = aglafogar...an-1)
#a e —
= —|laoiag...ap-1) (24)

#a



Second quantization

Finally if the state vector does not contain « and /3

alaglataz...ap) = 0
#a,
) = =0
agal,| aran ... ap) aglaaion ... ap)
— —
#a,8 #a,B

For all three cases we have

{al,ag} = alag +agal, =0, a#p



Second quantization

We can summarize our findings in Egs. (22) and (26) as

{al,, a3} = dap (27)

with d, is the Kronecker §-symbol.
The properties of the creation and annihilation operators can be
summarized as (for fermions)

and
aL|a1 .. .a,,>AS = ]aal .. .an>As.

from which follows

lag ... ap)as = 82&1322 . ~-31y,,|0>'



Second quantization

The hermitian conjugate has the folowing properties

Finally we found

an |0jah ... al 1) 2a =0, in particular a,|0) =0,
—_——

and
ag|laaran .. an) = larag .. oap),

and the corresponding commutator algebra

{al,al} ={an, 25} =0 {al,, a5} = dap.



Second quantization

A very useful operator is the so-called number-operator. Most
physics cases we will study in this text conserve the total number of
particles. The number operator is therefore a useful quantity which
allows us to test that our many-body formalism conserves the
number of particles. In for example (d, p) or (p, d) reactions it is
important to be able to describe quantum mechanical states where
particles get added or removed. A creation operator al, adds one
particle to the single-particle state o of a give many-body state
vector, while an annihilation operator a, removes a particle from a
single-particle state a.



Second quantization

Let us consider an operator proportional with a&aﬁ anda=p4. It
acts on an n-particle state resulting in

0 a ¢ {ai}

ajlaa|a1a2 cLQp) = (28)

loran ... an)  a € {a;}

Summing over all possible one-particle states we arrive at

<Z aLaa> ]alozz . Ozn) = n!OélOéz e Oén> (29)



Second quantization

The operator

N = Z alaa (30)

is called the number operator since it counts the number of
particles in a given state vector when it acts on the different
single-particle states. It acts on one single-particle state at the time
and falls therefore under category one-body operators. Next we
look at another important one-body operator, namely Hy and study
its operator form in the occupation number representation.



Second quantization

We want to obtain an expression for a one-body operator which
conserves the number of particles. Here we study the one-body
operator for the kinetic energy plus an eventual external one-body
potential. The action of this operator on a particular n-body state
with its pertinent expectation value has already been studied in
coordinate space. In coordinate space the operator reads

Ao = ho(xi) (31)
i
and the anti-symmetric n-particle Slater determinant is defined as

P(x1, %2, .., Xn, 1, 02, ..., () = \/»Z )PPty (x1) 0y (x2) - - -,



Second quantization

Defining

~

h (Xl)d’a X;) Z@Z)a x;) ak|h0|ak> (32)

we can easily evaluate the action of Hy on each product of
one-particle functions in Slater determinant. From Eq. (32) we
obtain the following result without permuting any particle pair

<Z ho(X, > ¢a1 Xl)wocz(XZ) ”%n(xn)
= Z<a1|h0]a1>¢o/l (Xl)woaz(XZ) e 'wan(xn)

!
Qp

+ D (@lholaz)ta; (1) ay (%2) - - Yy (Xn)

!
Q5

+ > (ol Bolan)ta, (x1)thas (x2) - - - Yhar (xn) (33)

o’



Second quantization

If we interchange particles 1 and 2 we obtain

(Z ho X, > 7/)a1 X1 Q/Jal (X2) o

= > {ablholaz)tha; (x2)vuy (x1) - -

!
Q5

+ ) (ahlholar)ta; (x2) ey (x1) -

!
Qp

/
an

+ > (dhlholan)ta, (x2)ta, (x2) - -

Yan(Xn)

Wan(Xn)

o, (Xn)

. ’(bai, (Xn)



Second quantization

We can continue by computing all possible permutations. We
rewrite also our Slater determinant in its second quantized form
and skip the dependence on the quantum numbers x;. Summing up
all contributions and taking care of all phases (—1)P we arrive at

Folor, az,... an) = Y (ailholar)|atas ... am)
o

+ Z(aé\ltlo|a2>\a1a'2...a,,>
ay

+ > {ahlholan)enas ... af)  (35)

/

Qp



Second quantization

In Eq. (35) we have expressed the action of the one-body operator
of Eq. (31) on the n-body state in its second quantized form. This
equation can be further manipulated if we use the properties of the
creation and annihilation operator on each primed quantum
number, that is

laran .. .aﬂ( cooQp) = al;,kaak\oéloéz Q. Olp) (36)

Inserting this in the right-hand side of Eq. (35) results in

Ho’a1a2...an> = Z(a’1|lfio|a1>al,laa1]a1a2...a,,>
o
+ Z<O/2|i\70|042>32/23a2’041042...05,,)
o
+

+ Z(a’n\ﬁo\aﬁa&aanlalag...a,,)

/

Qp



Second quantization

In the number occupation representation or second quantization we
get the following expression for a one-body operator which
conserves the number of particles

o = Y (alhol8)l (38
ap

Obviously, Hy can be replaced by any other one-body operator
which preserved the number of particles. The stucture of the
operator is therefore not limited to say the kinetic or single-particle
energy only.

The opearator Hy takes a particle from the single-particle state 3
to the single-particle state o with a probability for the transition
given by the expectation value (a|ho|3).



Second quantization

It is instructive to verify Eq. (38) by computing the expectation
value of Hy between two single-particle states

(| holaz) = > (alho| 8)(0] a, 2}, a2, |0) (39)
af



Second quantization

Using the commutation relations for the creation and annihilation
operators we have

day agab’agz = (604041 - agaal)((sﬂaz - 3223/3), (40)

which results in
(0lan, 323,3322\@ = dac 0z (41)

and
(aalholaz) = “(alho|B)0aar05a, = (alholaz)  (42)
of



Two-body operators in second quantization

Let us now derive the expression for our two-body interaction part,
which also conserves the number of particles. We can proceed in
exactly the same way as for the one-body operator. In the
coordinate representation our two-body interaction part takes the

following expression

= V(x, %) (43)

i<j

where the summation runs over distinct pairs. The term V can be
an interaction model for the nucleon-nucleon interaction or the
interaction between two electrons. It can also include additional
two-body interaction terms.
The action of this operator on a product of two single-particle
functions is defined as

V (X5, X)W (30 )0 () = Y Wb, (i)W, () (e [ D] oy (44)

oy



Operators in

second quantization

We can now let H, act on all terms in the linear combination for

laran ... ap

_l’_

). Without any permutations we have

D Vr5) | s a2 -
> {arablolaraa) i, ()i, (o)

Z <a'1a’,,|\7\a1a,,>1/1;1 (Xl)wozz (X2) o

!~
ajo

D {ahal | V]azan) e, (1), (x2) . -

!~
asag

Ya, (Xn)

- o, (Xn)

. ¢</xn (xn)

. %,, (xn)

where on the rhs we have a term for each distinct pairs.

(45)



Operators in second quantization

For the other terms on the rhs we obtain similar expressions and
summing over all terms we obtain

Hilonag .. ap) = Z (afah|V]aran)|afal . .. ap)
a0
+
+ Z<a&a',,|\7]a1an>|a&a2...a’n>
af,al,
+
+ Z(agam\?]aza,,)]alag...ai,)
ajh,ap



Operators in second quantization

We introduce second quantization via the relation

.|.

T
aaiaa;aa,aakmlag Ce QU Q)

= (—1)k_1(—1)/_2aLLaL;aa,aak\aka,a1a2...a,,)
—_—
Fou,
= (-DY(-1)?|lha) cnan ... ap)
—_—
#aj o

= |agaz...a)...a)...«ap,)

(47)



Operators in second quantization

Inserting this in (46) gives

Hiloran . ..ap) = Z (0/10/2|\7]@1042)32,132,23&23&1 a1ao ..
o0
+
- Z <o/1af,]O\alan>alialzaanaa1 ajag ..
g,
_|_
= Z <a’2a’n[\7|a2an>aT, a, an an, 102 ..
ab “ap“%n
ag,an,
+

/
= > (aBlVrd)alalasa,|araz ... an)
a?ﬂ:’}l?

. Q)

.Qip)

. Q)

(48)



Operators in second quantization

Here we let > indicate that the sums running over o and /3 run
over all single-particle states, while the summations v and § run
over all pairs of single-particle states. We wish to remove this
restriction and since

(aB|V]yd) = (Bal?]dv) (49)

we get

> (aBlvlyd)alalasa, = > (Bal0]6y)alalasa,  (50)
af aB

= Y (Bal0]éy)alalayas  (51)
ap

where we have used the anti-commutation rules.



Operators in second quantization

Changing the summation indices o and /3 in (51) we obtain
D _{aBloho)alalasa, = > (aplolv)alalaas  (52)
af af

From this it follows that the restriction on the summation over
and § can be removed if we multiply with a factor % resulting in

.1 A
Ai=3>_ (aBlohd)alabasa, (53)
afBvyd

where we sum freely over all single-particle states «, 3, v og ¢.



Operators in second quantization

With this expression we can now verify that the second
quantization form of H; in Eq. (53) results in the same matrix
between two anti-symmetrized two-particle states as its
corresponding coordinate space representation. We have

N 1 .
(cr0a| F|BL) = 5 D~ (aBl0176) (0] a0 20, 2l 2252, 31, al, |0).
aByd
(54)



Operators in second quantization

Using the commutation relations we get
B0y 30y A, ag asay a:gl 3232
_ t (260 2t — aial a4l
= 30,30,35,35(350y8, 35, — asap ayap,)
= 30,30,34,3) (05,058, — 045,35, 35 — 353 0y, + 253l 3, 25)
= aa, aalagag(éwléwz — 08, agzag

—058,0~8, + 5%323/21 as + 35321 aLz ay) (55)



Operators in second quantization

The vacuum expectation value of this product of operators becomes

(0laa, aa, aLaL 3537321 32[32 |0)
(048,058, — 058,048, )(0]aaz 3 333%0)
= (048,958, — 05610+8,) (0001002 — 0gar0aaz)  (56)



Operators in second quantization

Insertion of Eq. (56) in Eq. (54) results in

(aroo|H)|B1Ba) =

(
%[(a1a2|‘7’51/52> — (02| V[B21)
—(a201|0[B182) + (@201|0]B2f1)]
(a1a2|V|B1P2) — (a102|V|B2051)
(102|0]B152) As- (57)



Operators in second quantization

The two-body operator can also be expressed in terms of the
anti-symmetrized matrix elements we discussed previously as

B = 1S esiehoatabon,
afyd

1
- 3 ;6[<Oéﬁ|\7|fy(5> — (aB|916)] ahahasa,
afy

1 ~
- Z Z <aﬁ,v|’76>A8323}agafy (58)
aByd



Operators in second quantization

The factors in front of the operator, either % or % tells whether we
use antisymmetrized matrix elements or not.

We can now express the Hamiltonian operator for a many-fermion
system in the occupation basis representation as

. 1 .
H="> (o|f + fext|B)ala5 + n > (aB|vlyd)alalasa,.  (59)
a,f afBvyd

This is the form we will use in the rest of these lectures, assuming
that we work with anti-symmetrized two-body matrix elements.



Particle-hole formalism

Second quantization is a useful and elegant formalism for
constructing many-body states and quantum mechanical operators.
One can express and translate many physical processes into simple
pictures such as Feynman diagrams. Expecation values of
many-body states are also easily calculated. However, although the
equations are seemingly easy to set up, from a practical point of
view, that is the solution of Schroedinger’s equation, there is no
particular gain. The many-body equation is equally hard to solve,
irrespective of representation. The cliche that there is no free lunch
brings us down to earth again. Note however that a transformation
to a particular basis, for cases where the interaction obeys specific
symmetries, can ease the solution of Schroedinger’s equation.

But there is at least one important case where second quantization
comes to our rescue. It is namely easy to introduce another
reference state than the pure vacuum |0), where all single-particle
states are active. With many particles present it is often useful to
introduce another reference state than the vacuum state|0). We
will label this state |¢) (¢ for core) and as we will see it can reduce



Particle-hole formalism

In the original particle representation these states are products of
the creation operators a:&, acting on the true vacuum |0). Following
Eq. (3) we have

loqan .. ap_1an) = aLlaLZ e an ) a,,‘0> (60)
oo ... ap_1apnr1) = aLlagz .. aLn 1alénalwrl|0> (61)

g .. ap_1) = aLlagz . an ,10) (62)



Particle-hole formalism

If we use Eq. (60) as our new reference state, we can simplify
considerably the representation of this state

lc) = |a1aa ... ap_1an) = aLl a:flz e aLn_laan) (63)

The new reference states for the n+ 1 and n — 1 states can then be
written as

lonan ... ap_1appr1) = (—1)”aLn+1]c) = (—1)"|aps1)c (64)

oo ...an-1) = (=1)"ta,|c) = (=1)"a,_1§65)



Particle-hole formalism

The first state has one additional particle with respect to the new
vacuum state |c) and is normally referred to as a one-particle state
or one particle added to the many-body reference state. The
second state has one particle less than the reference vacuum state
|c) and is referred to as a one-hole state. When dealing with a new
reference state it is often convenient to introduce new creation and
annihilation operators since we have from Eq. (65)

aq|c) #0 (66)

since « is contained in |c), while for the true vacuum we have
aq|0) = 0 for all .

The new reference state leads to the definition of new creation and
annihilation operators which satisfy the following relations

balc) = 0 (67)
{bl,b}}Z{baabﬁ} =
It by — 5 (62)



Particle-hole formalism

The physical interpretation of these new operators is that of
so-called quasiparticle states. This means that a state defined by
the addition of one extra particle to a reference state |c) may not
necesseraly be interpreted as one particle coupled to a core. We
define now new creation operators that act on a state « creating a
new quasiparticle state

alo)=la), a>F
bl|c) :{ (70)
alc)=la"t), a<F

where F is the Fermi level representing the last occupied
single-particle orbit of the new reference state |c).
The annihilation is the hermitian conjugate of the creation operator

bo = (qu)Ty

resulting in



Particle-hole formalism

With the new creation and annihilation operator we can now
construct many-body quasiparticle states, with
one-particle-one-hole states, two-particle-two-hole states etc in the
same fashion as we previously constructed many-particle states. We
can write a general particle-hole state as

16182 . B i 5 Lty = bglbgz L. b;np bl bl, ... bth |c)

>F <F

(72)
We can now rewrite our one-body and two-body operators in terms
of the new creation and annihilation operators. The number
operator becomes

I\AI:ZaLaa: Zblba—i-nc— Zbgba (73)

a>F a<F

where n is the number of particle in the new vacuum state |c).
The action of N on a many-body state results in



Particle-hole formalism

We express the one-body operator Hy in terms of the quasi-particle
creation and annihilation operators, resulting in

Ao = 3 (olholelbs+ 37 [{olhol)5Lb} + (Blhola)bsb]
ap>F a>F
B<F
+ > (alhola) = Y (Blhola) blbg (77)
a<F aff<F

The first term gives contribution only for particle states, while the
last one contributes only for holestates. The second term can
create or destroy a set of quasi-particles and the third term is the
contribution from the vacuum state |c).



Particle-hole formalism

Before we continue with the expressions for the two-body operator,
we introduce a nomenclature we will use for the rest of this text. It
is inspired by the notation used in quantum chemistry. We reserve
the labels i, j, k,... for hole states and a, b, c, ... for states above
F, viz. particle states. This means also that we will skip the
constraint < F or > F in the summation symbols. Our operator Hy
reads now

Ao = > (alhlb)blby + > [(alhlivbib] + (ilhla)bib|

ab ai
+ DAl = 3 (1l blb; (78)



Particle-hole formalism

The two-particle operator in the particle-hole formalism is more
complicated since we have to translate four indices 374 to the
possible combinations of particle and hole states. When performing
the commutator algebra we can regroup the operator in five
different terms

Ar=AP + AP + A9 + A9 + A (79)
Using anti-symmetrized matrix elements, bthe term I:I,(a) is

a1 N
AL = i " (ab| V|cd)bibf bybe (80)
abcd



Particle-hole formalism

The next term I:I,(b) reads

N 1 ~ ~
AP = > (<ab|wc/>bgbj,b}bc + <ai|V|cb>bgb,-b,,bc) (81)

abci

This term conserves the number of quasiparticles but creates or
removes a three-particle-one-hole state. For H,(C) we have

A = ZZ<<;,;byV|U>blbf,b}b?+<u!V|ab>11—abbbjbi> +
abij

1 oL 1 oL
5 > "(ail V|bj)blb! byb; + 5 > (ail V|bi)blby.  (82)
abij abi



Particle-hole formalism

The first line stands for the creation of a two-particle-two-hole
state, while the second line represents the creation to two
one-particle-one-hole pairs while the last term represents a
contribution to the particle single-particle energy from the hole
states, that is an interaction between the particle states and the
hole states within the new vacuum state. The fourth term reads

~(d 1 R .
H/( ) _ ZZ <<a,|\/\1k>b§bzb}b,-+<J,|V|ak>b£bjb,-ba) +
aijk

%Z <<ai| Vi) bib} + (i Vai) — (_ji]\7|ia>bjba> (83)

aij

The terms in the first line stand for the creation of a particle-hole
state interacting with hole states, we will label this as a
two-hole-one-particle contribution. The remaining terms are a
particle-hole state interacting with the holes in the vacuum state.
Finally we have



Summarizing and defining a normal-ordered Hamiltonian

A
¢A5(a1, e, AT XD, . .XA) = \/]-,E Z(—l)PﬁHwai(X,'),
p i=1

which is equivalent with |ay ... a) = aly, ... ah,]|0). We have also

a,Ta|0> =1p), aplq) = dpgl0)
Opg = {ap, ag} ,

0= {az,aq} ={ap, aq} = {32’35}

|¢0>: |a1...aA), ag,...,oa < aF

and



Summarizing and defining a normal-ordered Hamiltonian

{a;,aq} = 6pq;p7 aq < aF
{apva:{;} = 6pqap7 q>aF
withi,j,...<af, a,b,...>afF, p,q,...—any
aj|Po) = [®;),  al|Po) = |97

and
al|dg) =0 a,|®g) =0



Summarizing and defining a normal-ordered Hamiltonian

One- and two-body operators
The one-body operator is defined as

F= Z<P|F’CI>3};aq
Pq
while the two-body opreator is defined as
0 = 3 (palolrs)asabal
= 2 pqivirs Asapaqasa,

pars

where we have defined the antisymmetric matrix elements

(pq|V|rs)as = (pq|V|rs) — (pq|V|sr).



Summarizing and defining a normal-ordered Hamiltonian

We can also define a three-body operator
~ 1

Vi = % Z <pqr‘\73|Stu>Asa};aga];au3tas
pqrstu

with the antisymmetrized matrix element

(pqr|Vs|stu) as = (pqr|V3|stu) + (pqr|V3|tus) + (pqr|Vs|ust) — (pqr|V3|su
(85)



Hartree-Fock in second quantization and stability of HF
solution

We wish now to derive the Hartree-Fock equations using our
second-quantized formalism and study the stability of the
equations. Our ansatz for the ground state of the system is
approximated as (this is our representation of a Slater determinant
in second quantization)

|®g) = |c) = a,TajT ) ..aﬂO).

We wish to determine 4" so that Ef'F = (c|H|c) becomes a local

minimum.

In our analysis here we will need Thouless’ theorem, which states

that an arbitrary Slater determinant |c¢’) which is not orthogonal to
n

a determinant |c) = HaL,\0>, can be written as
i=1

N ,,,,,rv‘v‘r ,Jr,]|,\



Hartree-Fock in second quantization and Thouless' theorem

Let us give a simple proof of Thouless' theorem. The theorem
states that we can make a linear combination av particle-hole
excitations with respect to a given reference state |c). With this
linear combination, we can make a new Slater determinant |c’)
which is not orthogonal to |c), that is

(c|c') # 0.

To show this we need some intermediate steps. The exponential
product of two operators exp A X exp B is equal to exp (A + B)
only if the two operators commute, that is



Thouless' theorem

If the operators do not commute, we need to resort to the
Baker-Campbell-Hauersdorf. This relation states that

exp C = exp Aexp B,
with
C= A+ B+ 1A B+ S[A BB — S[1A BLA +
B 277 12077 12077
From these relations, we note that in our expression for |c¢’) we
have commutators of the type
[alaia azaf]v

and it is easy to convince oneself that these commutators, or higher
powers thereof, are all zero. This means that we can write out our
new representation of a Slater determinant as

( b} ( /


http://www.encyclopediaofmath.org/index.php/Campbell%E2%80%93Hausdorff_formula

Thouless' theorem
We note that

H Z Ca,-ala,- Z Cb,-aZa,-]c> = 0,

i a>F b>F

and all higher-order powers of these combinations of creation and
annihilation operators disappear due to the fact that (a;)"|c) =0
when n > 1. This allows us to rewrite the expression for |c’) as

') H{1+ZCa,aa,} ,

a>F
which we can rewrite as
|’ H{1+ZCa,a a,}|a,1 a, .- ,.n\ ).
a>F

The last equation can be written as



New operators
If we define a new creation operator

bl =al + Y Cual, (88)

a>F

we have

<) =Tls0 -1 (4 + T coat o

i a>F

meaning that the new representation of the Slater determinant in
second quantization, |c’), looks like our previous ones. However,
this representation is not general enough since we have a restriction
on the sum over single-particle states in Eq. (88). The
single-particle states have all to be above the Fermi level. The
question then is whether we can construct a general representation
of a Slater determinant with a creation operator

F‘IT —_— v fr,,:}T



Showing that |&) = |c/)

We need to show that |&) = |c¢’). We need also to assume that the
new state is not orthogonal to |c), that is (c|¢) # 0. From this it
follows that

(clé) = (Olai, - au | D fapah | | D fagdh | - | D fieal ] 10)
p=i q=n t=i1

which is nothing but the determinant det(f;,) which we can, using
the intermediate normalization condition, normalize to one, that is

det(fip) = 1,

meaning that f has an inverse defined as (since we are dealing with
orthogonal, and in our case unitary as well, transformations)

> fufyt =y,
k



Wrapping it up

Using these relations we can then define the linear combination of
creation (and annihilation as well) operators as

kalle kallzflpa —3k+z Z fkllf,pa.

p=i1 i p=int1

-1
Ckp = Z fi " fips

i<F

Defining

we can redefine
oo o0
T —1g .t _ _f T
A+, D fafpab=ac+ Y cupap =
i p=int1 p=in+1

our starting point. We have shown that our general representation
of a Slater determinant

=TT &0y — 1~ — TT A0y



Thouless' theorem

This means that we can actually write an ansatz for the ground
state of the system as a linear combination of terms which contain
the ansatz itself |c) with an admixture from an infinity of
one-particle-one-hole states. The latter has important consequences
when we wish to interpret the Hartree-Fock equations and their
stability. We can rewrite the new representation as

') =1e) + loc),

where |6c) can now be interpreted as a small variation. If we
approximate this term with contributions from one-particle-one-hole
(1p-1h) states only, we arrive at

Iy = (1 + ZdCa,-ala,) |c).
ai
In our derivation of the Hartree-Fock equations we have shown that

N
fc lrrl \ ~



Hartree-Fock in second quantization and stability of HF
solution

The variational condition for deriving the Hartree-Fock equations
guarantees only that the expectation value (c|H|c) has an extreme
value, not necessarily a minimum. To figure out whether the
extreme value we have found is a minimum, we can use second
quantization to analyze our results and find a criterion for the
above expectation value to a local minimum. We will use Thouless’
theorem and show that

(c'|H|") A
> H = E
(eley = e =k
with
) = |) + |6c).

Using Thouless' theorem we can write out |¢’) as

= exp I?V(SCa,a a,l Ic) (89)



Hartree-Fock in second quantization and stability of HF
solution

The norm of |¢’) is given by (using the intermediate normalization
condition (c’|c) = 1)

|y =141 ) |6Gil* + 0(5C3).

a>F i<F

The expectation value for the energy is now given by (using the
Hartree-Fock condition)

(cIAly = (clAlc) + Y > 6C50Chi(clafasHalajlc)+

ab>F ij<F

o Z Z(SCa,(SCbJ c|Aal, aabaj\ Z Z(S 20 Chj c]a apa; Ta,A

" ab>F jj<F ! ab>F [j<F



Hartree-Fock in second quantization and stability of HF
solution

We have already calculated the second term on the right-hand side
of the previous equation

(el ({alas} Ataba}) le) = 32 D~ 0C30Costplhola) (el ({a]2aHabag}

Pq ijab
(91)
3 3065 Cipalolrs) (el ({alaa) (ahal
pqrs ijab
(92)

resulting in

Eo Y 10Gail* + D 16CailP (g2 — £1) = Y _(ajl0]bi)d C56 Ciy.

ai ai ijab



Hartree-Fock in second quantization and stability of HF
solution

-t (afas}alaa} W) ) = 5 tel (Vnalartahar}) Ie

which is nothing but

1 A * 1 el A * ES *
Stel (ndalaitala}) o) = 5 D" ((i191ab)) 6 oGy
’ ijab

or

1 A * *
5 2 ((ab|9li)d C5o C;

ijab

where we have used the relation
(a|Alb) = ((b|AT|a))*

due to the hermiticity of 4 and V.



Hartree-Fock in second quantization and stability of HF
solution

We define two matrix elements
Auibj = —(aj|Vbi)

and
Baibj = (ab|V|ij)

both being anti-symmetrized.



Hartree-Fock in second quantization and stability of HF
solution

With these definitions we write out the energy as

(c|H|) = <1 +3 \5ca,-\2> (clHIe) + 3 [6Cai2(HF —MF) 3 A,
ai

ai ijab
(93)
Z B 10 Caid Coj + = Z Bainjd C5i0 Ciy + O(6C2),
Uab Uab
(94)

which can be rewritten as

and skipping higher-order terms we arrived



Hartree-Fock in second quantization and stability of HF
solution

We have defined

1 N
AE = 5 (xIM]x)
with the vectors
x=[6C 6C"

and the matrix

~ (A+A B

with Aai,bj = (83 — 6;)5ab5y.



Hartree-Fock in second quantization and stability of HF
solution

The condition )

AE = -
2

(xIM]x) >0
for an arbitrary vector
x=1[6C 6C*]"

means that all eigenvalues of the matrix have to be larger than or
equal zero. A necessary (but no sufficient) condition is that the
matrix elements (for all ai )

(63 — 5i)5ab5ij + Az > 0.

This equation can be used as a first test of the stability of the
Hartree-Fock equation.



Operators in second quantization

In the build-up of a shell-model or FCI code that is meant to tackle
large dimensionalities is the action of the Hamiltonian H on a
Slater determinant represented in second quantization as

1. an) = al, al, ...al [0).

a1 9o

The time consuming part stems from the action of the Hamiltonian
on the above determinant,

Z(a!t+u|ﬂ>aTaﬁ+ Zaﬁ\vh@ aﬂa(;‘%Y aalaL2 .aLDIO).
afB aﬁvé

A practically useful way to implement this action is to encode a
Slater determinant as a bit pattern.



Operators in second quantization

Assume that we have at our disposal n different single-particle
orbits ag, as, ..., a,_1 and that we can distribute among these
orbits N < n particles.
A Slater determinant can then be coded as an integer of n bits. As
an example, if we have n = 16 single-particle states g, a1, ..., a1s
and N = 4 fermions occupying the states a3, ag, @19 and ay3 we
could write this Slater determinant as

oy = aL3agsaLIOagl3|O>.
The unoccupied single-particle states have bit value 0 while the
occupied ones are represented by bit state 1. In the binary notation
we would write this 16 bits long integer as

Qo 1 Qo Q3 Q4 G5 Qp Q7 Qg Qg Q10 Q11 Q12 G113
o o 0 1 o o0 1 O O O 1 O o0 1

which translates into the decimal number



Operators in second quantization

With N particles that can be distributed over n single-particle
states, the total number of Slater determinats (and defining thereby
the dimensionality of the system) is

dim(H) = < /,\7/ )

The total number of bit patterns is 2".



Operators in second quantization

We assume again that we have at our disposal n different
single-particle orbits ag, ap, ..., a,_1 and that we can distribute
among these orbits N < n particles. The ordering among these
states is important as it defines the order of the creation operators.
We will write the determinant

®p=al.al al al |0),

Q3706 (10 ~ (13

in a more compact way as
®36,10,13 = |0001001000100100).
The action of a creation operator is thus

al,, ®3,610,13 = al,,[0001001000100100) = af, a!,,al, al,  al |0},

Q4703 " e (10 (13

which becomes

—al al al al al |0) = —|0001101000100100).

Q37 0g "0 T (10 T (13



Operators in second quantization

Similarly

al 36,1013 = al,,/0001001000100100) = a,_al,.al, al,  al . [0),

Qe (3 (g "(X10 (13

which becomes
—al, (al,)?al,,al,,10) = 0!
This gives a simple recipe:
» If one of the bits b; is 1 and we act with a creation operator
on this bit, we return a null vector
» If b; =0, we set it to 1 and return a sign factor (—1)/, where /
is the number of bits set before bit j.



Operators in second quantization

Consider the action of agz on various slater determinants:

ah,Poor11 = ah,|00111) =0 x |00111)
ah,®ot011 = ah,|01011) = (—1) x [01111)
ah, o101 = ah,|01101) =0 x |01101)
al,®o1110 = ah,|01110) =0 x [01110)
al,®10011 = al,|10011) = (1) x [10111)
al,®10001 = all,[10101) =0 x [10101)
ah,®10110 = ah,|10110) =0 x |10110)
ah,®11001 = ah,|11001) = (+1) x [11101)
al,®11010 = ah,|11010) = (+1) x |11110)

What is the simplest way to obtain the phase when we act with one
annihilation(creation) operator on the given Slater determinant
representation?



Operators in second quantization

We have an SD representation
q)/\ = a(ttoaj;ég,alce a(tz]_o 3(213|0>7
in a more compact way as
®0.36.10,13 = |1001001000100100).
The action of
al,300%0,3,6.10,13 = a,,/0001001000100100) = a, al, al, al,. al..[0),
which becomes

—al_al al al al ]0)= —]0001101000100100).

Q3704 e (10 T (13



Operators in second quantization

The action
300 %0,3,6,10,13 = |0001001000100100),

can be obtained by subtracting the logical sum (AND operation) of
®036,10,13 and a word which represents only «p, that is

|1000000000000000),

from ¢0,3,6,10,13 = ‘1001001000100100)

This operation gives |0001001000100100).

Similarly, we can form aL4aao¢07376,1o,13, say, by adding
|0000100000000000) to an,Po,3,6,10,13, first checking that their
logical sum is zero in order to make sure that orbital a4 is not
already occupied.



Operators in second quantization
It is trickier however to get the phase (—1)/. One possibility is as
follows

» Let 51 be a word that represents the 1—bit to be removed and
all others set to zero.

In the previous example S; = |1000000000000000)

» Define S as the similar word that represents the bit to be
added, that is in our case

S = |0000100000000000>.
» Compute then S = S; — S, which here becomes
S =]0111000000000000)

» Perform then the logical AND operation of S with the word
containing

®0.36,10,13 = [1001001000100100),
which results in [0001000000000000). Counting the number of



Exercises
Exercise 1
This exercise serves to convince you about the relation between two
different single-particle bases, where one could be our new
Hartree-Fock basis and the other a harmonic oscillator basis.
Consider a Slater determinant built up of single-particle orbitals vy,
with A =1,2,..., A. The unitary transformation

s =Y Caxdr,
A

brings us into the new basis. The new basis has quantum numbers
a=1,2,...,A. Show that the new basis is orthonormal. Show that
the new Slater determinant constructed from the new single-particle
wave functions can be written as the determinant based on the
previous basis and the determinant of the matrix C. Show that the
old and the new Slater determinants are equal up to a complex
constant with absolute value unity. (Hint, C is a unitary matrix).
Starting with the second quantization representation of the Slater
determinant



Exercises
Exercise 2
Calculate the matrix elements

<o<10z2|l3|0z1a2>

and A
<a1a2]G|a1a2>
with
|C¥1a2> - aal a2|0>
F= Z(a|f\5)a&ag,
af

(alF18) = / () F ()b (x)dx

A

6= Z (aB|&|y0)al,alasa,,
afvyo

and



Exercises

Exercise 3
Show that the onebody part of the Hamiltonian

Ao = (plholq)a}aq,
Pq

can be written, using standard annihilation and creation operators,
in normal-ordered form as

Fo =" (plhola) {a aq}+2 ilholi).
pq

Explain the meaning of the various symbols. Which reference
vacuum has been used?



Exercises
Exercise 4
Show that the twobody part of the Hamiltonian

| A
H; = 2 E <pq\v!rs>a£agasar,
pqrs

can be written, using standard annihilation and creation operators,
in normal-ordered form as

g, = 1 ) ol L=,
Hy = 2 Z<Pq\vlr5> {a;r,agasa,}—&—Z(p/]v\qO {3£3q}+§ Z<UMU>-

pqrs pai i
Explain again the meaning of the various symbols.
This exercise is optional: Derive the normal-ordered form of the
threebody part of the Hamiltonian.

N 1 ~
As = oo > {par|is|stu) afalaf auaras,

pqr
stu



Exercises
Exercise 5
The aim of this exercise is to set up specific matrix elements that
will turn useful when we start our discussions of the nuclear shell
model. In particular you will notice, depending on the character of
the operator, that many matrix elements will actually be zero.
Consider three N-particle Slater determinants |®q, |®?) and \Cb;fj-b),
where the notation means that Slater determinant |®?) differs from
|®o) by one single-particle state, that is a single-particle state v); is
replaced by a single-particle state v,. It is often interpreted as a
so-called one-particle-one-hole excitation. Similarly, the Slater
determinant |d>;?’jb) differs by two single-particle states from |®g)
and is normally thought of as a two-particle-two-hole excitation.
We assume also that |®g) represents our new vacuum reference
state and the labels ijk ... represent single-particle states below the
Fermi level and abc ... represent states above the Fermi level,
so-called particle states. We define thereafter a general onebody
normal-ordered (with respect to the new vacuum state) operator as

A - (. A



Exercises
Exercise 6
Write a program which sets up all possible Slater determinants
given N = 4 eletrons which can occupy the atomic single-particle
states defined by the 1s, 2s2p and 3s3p3d shells. How many
single-particle states n are there in total? Include the spin degrees
of freedom as well. We include here a python program which may
aid in this direction. It uses bit manipulation functions from
http://wiki.python.org/moin/BitManipulation.

import math

mmnn

4 simple Python class for Slater determinant manipulation
Bit-manipulation stolen from:

http://wiki.python.org/moin/BitManipulation

mmnn

# bitCount () counts the number of bits set (not an optimal function)

def bitCount (int_type):
" Count bits set in integer """
count = 0
while(int_type):


http://wiki.python.org/moin/BitManipulation

Exercises: Using sympy to compute matrix elements

Exercise 7
Compute the matrix element

(a1aa3| Glajahal),

using Wick's theorem and express the two-body operator G in the
occupation number (second quantization) representation.



Exercises: Using sympy to compute matrix elements

The last exercise can be solved using the symbolic Python package
called SymPy. SymPy is a Python package for general purpose
symbolic algebra. There is a physics module with several interesting
submodules. Among these, the submodule called secondquant,
contains several functionalities that allow us to test our algebraic
manipulations using Wick's theorem and operators for second

quantization.

from sympy import *
from sympy.physics.secondquant import *

i, j = symbols(’i,j’, below_fermi=True)
a, b = symbols(’a,b’, above_fermi=True)
p, 9 = symbols(’p,q’)

print simplify(wicks(Fd(i)*F(a)*Fd(p)*F(q)*Fd(b)*F(j), keep_only_fully

The code defines single-particle states above and below the Fermi
level, in addition to the genereal symbols pg which can refer to any
type of state below or above the Fermi level. Wick's theorem is
implemented between the creation and annihilation operators Fd
and F, respectively. Using the simplify option, one can lump
tocether several Kronecker-8 functions.



Exercises: Using sympy to compute matrix elements

We can expand the above Python code by defining one-body and
two-body operators using the following SymPy code

# This code sets up a two-body Hamiltonian for fermions
from sympy import symbols, latex, WildFunction, collect, Rational
from sympy.physics.secondquant import F, Fd, wicks, AntiSymmetricTensc

# setup hamiltonian

p,9,r,s = symbols(’p q r s’,dummy=True)

f = AntiSymmetricTensor(’f’,(p,),(q,))

pr = NO((Fd(p)*F(q)))

v = AntiSymmetricTensor(’v’,(p,q),(r,s))

pgsr = NO(Fd(p)*Fd(q)*F (s)*F(r))

Hamiltonian=f*pr + Rational(1l)/Rational (4)*v*pgsr
print "Hamiltonian defined as:", latex(Hamiltonian)

Here we have used the AntiSymmetric Tensor functionality, together
with normal-ordering defined by the NO function. Using the latex
option, this program produces the following output

1
fqp {azaq} - szqrp {agaga,as}



Exercises: Using sympy to compute matrix elements

We can now use this code to compute the matrix elements between
two two-body Slater determinants using Wick's theorem.

from sympy import symbols, latex, WildFunction, collect, Rational, sim
from sympy.physics.secondquant import F, Fd, wicks, AntiSymmetricTensc
# setup hamiltontian

ps9,r,s = symbols(’p q r s’,dummy=True)

f = AntiSymmetricTensor(’f’,(p,),(q,))

pr = NO((Fd(p)*F(q)))

v = AntiSymmetricTensor(’v’,(p,q),(r,s))

pgsr = NO(Fd(p)+Fd(q) *F(s)+F (r))

Hamiltonian=f*pr + Rational(l)/Rational(4)*v*pgsr

c,d = symbols(’c, d’,above_fermi=True)

a,b = symbols(’a, b’,above_fermi=True)

expression = wicks(F(b)*F(a)+*Hamiltonian*Fd(c)*Fd(d) ,keep_only_fully_c
expression = evaluate_deltas(expression)
expression = simplify(expression)

print "Hamiltonian defined as:", latex(expression)

The result is as expected,

5acfj - 5adfcb - 5bCfda + 5bdfCa + V?(I;'



Exercises: Using sympy to compute matrix elements

We can continue along these lines and define a normal-ordered
Hamiltonian with respect to a given reference state. In our first

step we just define the Hamiltonian

from sympy import symbols, latex, WildFunction, collect, Rational, sin
from sympy.physics.secondquant import F, Fd, wicks, AntiSymmetricTensc
# setup hamiltonian
p,q,r,s = symbols(’p q r s’,dummy=True)
f = AntiSymmetricTensor(’f’,(p,),(q,))
pr = Fd(p)*F(q)
v = AntiSymmetricTensor(’v’,(p,q),(r,s))
pasr = Fd(p)*Fd(q)*F(s)*F(r)
#define the Hamiltonian
Hamiltonian = f*pr + Rational(l)/Rational(4)*v*pgsr
#define indices for states above and below the Fermi level
index_rule = {
’below’: ’k1°7,
’above’: ’cd’,
’general’: ’pqgrs’

Hnormal = substitute_dummies(Hamiltonian,new_indices=True, pretty_indi
print "Hamiltonian defined as:", latex(Hnormal)

which results in

1
quagap + 1 v;;alaiapaq



Exercises: Using sympy to compute matrix elements

In our next step we define the reference energy Ey and redefine the
Hamiltonian by subtracting the reference energy and collecting the
coefficients for all normal-ordered products (given by the NO

function).

from sympy import symbols, latex, WildFunction, collect, Rational, sim
from sympy.physics.secondquant import F, Fd, wicks, AntiSymmetricTensc
# setup hamiltonian
p,9,r,s = symbols(’p q r s’,dummy=True)
f = AntiSymmetricTensor(’f’,(p,),(q,))
pr = Fd(p)*F(q)
v = AntiSymmetricTensor(’v’,(p,q),(r,s))
pasr = Fd(p)*Fd(q)*F(s)*F(r)
#define the Hamiltonian
Hamiltonian=f*pr + Rational(l)/Rational (4)*v*pgsr
#define indices for states above and below the Fermi level
index_rule = {
’below’: ’k1°7,
above’: ’cd’,
’general’: ’pqgrs’

Hnormal = substitute_dummies(Hamiltonian,new_indices=True, pretty_indi
EO = wicks(Hnormal,keep_only_fully_contracted=True)

Hnormal = Hnormal-EO

w = WildFunction(’w?’)

Hnormal = collect (Hnormal NO (7))



Exercises: Using sympy to compute matrix elements

We can now go back to exercise 7 and define the Hamiltonian and
the second-quantized representation of a three-body Slater
determinant.

from sympy import symbols, latex, WildFunction, collect, Rational, sim
from sympy.physics.secondquant import F, Fd, wicks, AntiSymmetricTenso
# setup hamiltonian

p,9,r,s = symbols(’p q r s’,dummy=True)

v = AntiSymmetricTensor(’v’, (p,q),(r,s))

pasr = NO(Fd(p)*Fd(q)*F(s)*F(x))
Hamiltonian=Rational (1) /Rational (4)*v*pgsr

a,b,c,d,e,f = symbols(’a,b, c, d, e, f’,above_fermi=True)

expression = wicks(F(c)*F(b)*F(a)*Hamiltonian*Fd(d)*Fd(e)*Fd(f) ,keep_c
expression = evaluate_deltas(expression)

expression = simplify(expression)

print latex(expression)

resulting in nine terms (as expected),

b b b b b
— 020V —0aeVES +0af V] —Obg VI —ObeVEy +0bf Vg +0cd VEF +0ce Vi) —0Ocf Vi



Exercises: Derivation of Hartree-Fock equations

Exercise 8
What is the diagrammatic representation of the HF equation?

n
—(awlu™ i)+ [(onay| V] aias) — (akaj|v|ejai)] = 0
j=1

(Represent (—u'F) by the symbol — — =X .)



Exercises: Derivation of Hartree-Fock equations
Exercise 9
Consider the ground state |®) of a bound many-particle system of
fermions. Assume that we remove one particle from the
single-particle state A and that our system ends in a new state
|®,). Define the energy needed to remove this particle as

EA_Z] ®plax|®)*(Eo — En),

where Eg and E, are the ground state energies of the states |$)
and |®,), respectively.
» Show that
Ex = (@[} [ax, H][®).
where H is the Hamiltonian of this system.
> |f we assume that ® is the Hartree-Fock result, find the

relation between E) and the single-particle energy ¢ for states
A< F and XA > F, with



