Loading [MathJax]/extensions/TeX/boldsymbol.js

 

 

 

Hartree-Fock by varying the coefficients of a wave function expansion

We wish now to minimize the above functional. We introduce again a set of Lagrange multipliers, noting that since \langle i | j \rangle = \delta_{i,j} and \langle \alpha | \beta \rangle = \delta_{\alpha,\beta} , the coefficients C_{i\gamma} obey the relation \langle i | j \rangle=\delta_{i,j}=\sum_{\alpha\beta} C^*_{i\alpha}C_{i\beta}\langle \alpha | \beta \rangle= \sum_{\alpha} C^*_{i\alpha}C_{i\alpha}, which allows us to define a functional to be minimized that reads \begin{equation} F[\Phi^{HF}]=E[\Phi^{HF}] - \sum_{i=1}^A\epsilon_i\sum_{\alpha} C^*_{i\alpha}C_{i\alpha}. \tag{16} \end{equation}