where the eigenvalues are \( \varepsilon_{\alpha} \) and the eigenfunctions are \( \psi_{\alpha}(x_i) \). The subscript \( \alpha \) represents quantum numbers like the orbital angular momentum \( l_{\alpha} \), its projection \( m_{l_{\alpha}} \) and the principal quantum number \( n_{\alpha}=0,1,2,\dots \).
The eigenvalues are $$ \varepsilon_{\alpha} = \hbar\omega \left(2n_{\alpha}+l_{\alpha}+\frac{3}{2}\right). $$