The translationally invariant one- and two-body Hamiltonian reads for an A-nucleon system,
$$
\tag{5}
\hat{H}=\left[\sum_{i=1}^A\frac{\boldsymbol{p}_i^2}{2m} -\frac{\boldsymbol{P}^2}{2mA}\right] +\sum_{i < j}^A V_{ij} \; ,
$$
where \( V_{ij} \) is the nucleon-nucleon interaction. Adding zero as here
$$
\sum_{i=1}^A\frac{1}{2}m\omega^2\boldsymbol{r}_i^2-
\frac{m\omega^2}{2A}\left[\boldsymbol{R}^2+\sum_{i < j}(\boldsymbol{r}_i-\boldsymbol{r}_j)^2\right]=0.
$$
we can then rewrite the Hamiltonian as
$$
\hat{H}=\sum_{i=1}^A \left[ \frac{\boldsymbol{p}_i^2}{2m}
+\frac{1}{2}m\omega^2 \boldsymbol{r}^2_i
\right] + \sum_{i < j}^A \left[ V_{ij}-\frac{m\omega^2}{2A}
(\boldsymbol{r}_i-\boldsymbol{r}_j)^2
\right]-H_{\mathrm{CoM}}.
$$