A non-practical way of solving the eigenvalue problem
Inserting the various matrix elements we can rewrite the previous equation as
$$
\Delta E=\sum_{ai}\langle i| \hat{f}|a \rangle C_{i}^{a}+
\sum_{abij}\langle ij | \hat{v}| ab \rangle C_{ij}^{ab}.
$$
This equation determines the correlation energy but not the coefficients \( C \).
We need more equations. Our next step is to set up
$$
\langle \Phi_i^a | \hat{H} -E| \Phi_0\rangle + \sum_{bj}\langle \Phi_i^a | \hat{H} -E|\Phi_{j}^{b} \rangle C_{j}^{b}+
\sum_{bcjk}\langle \Phi_i^a | \hat{H} -E|\Phi_{jk}^{bc} \rangle C_{jk}^{bc}+
\sum_{bcdjkl}\langle \Phi_i^a | \hat{H} -E|\Phi_{jkl}^{bcd} \rangle C_{jkl}^{bcd}=0,
$$
as this equation will allow us to find an expression for the coefficents \( C_i^a \) since we can rewrite this equation as
$$
\langle i | \hat{f}| a\rangle +\langle \Phi_i^a | \hat{H}|\Phi_{i}^{a} \rangle C_{i}^{a}+ \sum_{bj\ne ai}\langle \Phi_i^a | \hat{H}|\Phi_{j}^{b} \rangle C_{j}^{b}+
\sum_{bcjk}\langle \Phi_i^a | \hat{H}|\Phi_{jk}^{bc} \rangle C_{jk}^{bc}+
\sum_{bcdjkl}\langle \Phi_i^a | \hat{H}|\Phi_{jkl}^{bcd} \rangle C_{jkl}^{bcd}=EC_i^a.
$$