A quick tour of Coupled Cluster theory

The coupled cluster energy is a function of the unknown cluster amplitudes \( t_{i_1i_2\ldots i_n}^{a_1a_2\ldots a_n} \), given by the solutions to the amplitude equations $$ \begin{equation*} 0 = \langle\Phi_{i_1 \ldots i_n}^{a_1 \ldots a_n}\vert \overline{H}\vert \Phi_0\rangle. \end{equation*} $$ The similarity transformed Hamiltonian \( \overline{H} \) is expanded using the Baker-Campbell-Hausdorff expression, $$ \begin{align*} \overline{H}&= \hat{H}_N + \left[ \hat{H}_N, \hat{T} \right] + \frac{1}{2} \left[\left[ \hat{H}_N, \hat{T} \right], \hat{T}\right] + \ldots \\ & \quad \frac{1}{n!} \left[ \ldots \left[ \hat{H}_N, \hat{T} \right], \ldots \hat{T} \right] +\dots \end{align*} $$ and simplified using the connected cluster theorem $$ \begin{equation*} \overline{H}= \hat{H}_N + \left( \hat{H}_N \hat{T}\right)_c + \frac{1}{2} \left( \hat{H}_N \hat{T}^2\right)_c + \dots + \frac{1}{n!} \left( \hat{H}_N \hat{T}^n\right)_c +\dots \end{equation*} $$