The CCD approximation

These equations can be reduced to (after several applications of Wick's theorem) to, for all \( i > j \) and all \( a > b \), $$ \begin{align} 0 = \langle ab \vert \hat{v} \vert ij \rangle + \left(\epsilon_a+\epsilon_b-\epsilon_i-\epsilon_j\right)t_{ij}^{ab} & \nonumber \\ +\frac{1}{2}\sum_{cd} \langle ab \vert \hat{v} \vert cd \rangle t_{ij}^{cd}+\frac{1}{2}\sum_{kl} \langle kl \vert \hat{v} \vert ij \rangle t_{kl}^{ab}+\hat{P}(ij\vert ab)\sum_{kc} \langle kb \vert \hat{v} \vert cj \rangle t_{ik}^{ac} & \nonumber \\ +\frac{1}{4}\sum_{klcd} \langle kl \vert \hat{v} \vert cd \rangle t_{ij}^{cd}t_{kl}^{ab}+\hat{P}(ij)\sum_{klcd} \langle kl \vert \hat{v} \vert cd \rangle t_{ik}^{ac}t_{jl}^{bd}& \nonumber \\ -\frac{1}{2}\hat{P}(ij)\sum_{klcd} \langle kl \vert \hat{v} \vert cd \rangle t_{ik}^{dc}t_{lj}^{ab}-\frac{1}{2}\hat{P}(ab)\sum_{klcd} \langle kl \vert \hat{v} \vert cd \rangle t_{lk}^{ac}t_{ij}^{db},& \tag{1} \end{align} $$ where we have defined $$ \hat{P}\left(ab\right)= 1-\hat{P}_{ab}, $$ where \( \hat{P}_{ab} \) interchanges two particles occupying the quantum numbers \( a \) and \( b \).