A non-practical way of solving the eigenvalue problem
For \( C_{jk}^{bc} \) we need then
$$
\langle \Phi_{ij}^{ab} | \hat{H} -E| \Phi_0\rangle + \sum_{kc}\langle \Phi_{ij}^{ab} | \hat{H} -E|\Phi_{k}^{c} \rangle C_{k}^{c}+
$$
$$
\sum_{cdkl}\langle \Phi_{ij}^{ab} | \hat{H} -E|\Phi_{kl}^{cd} \rangle C_{kl}^{cd}+\sum_{cdeklm}\langle \Phi_{ij}^{ab} | \hat{H} -E|\Phi_{klm}^{cde} \rangle C_{klm}^{cde}+\sum_{cdefklmn}\langle \Phi_{ij}^{ab} | \hat{H} -E|\Phi_{klmn}^{cdef} \rangle C_{klmn}^{cdef}=0,
$$
and we can isolate the coefficients \( C_{kl}^{cd} \) in a similar way as we did for the coefficients \( C_{i}^{a} \).
A standard choice for the first iteration is to set
$$
C_{ij}^{ab} =\frac{\langle ij \vert \hat{v} \vert ab \rangle}{\epsilon_i+\epsilon_j-\epsilon_a-\epsilon_b}.
$$