Because we have fermions, we are required to have antisymmetric wavefunctions, e.g.
$$
\Psi(x_1, x_2, x_3, \ldots, x_A) = - \Psi(x_2, x_1, x_3, \ldots, x_A)
$$
etc. This is accomplished formally by using the determinantal formalism
$$
\Psi(x_1, x_2, \ldots, x_A)
= \frac{1}{\sqrt{A!}}
\det \left |
\begin{array}{cccc}
\phi_1(x_1) & \phi_1(x_2) & \ldots & \phi_1(x_A) \\
\phi_2(x_1) & \phi_2(x_2) & \ldots & \phi_2(x_A) \\
\vdots & & & \\
\phi_A(x_1) & \phi_A(x_2) & \ldots & \phi_A(x_A)
\end{array}
\right |
$$
Product wavefunction + antisymmetry = Slater determinant.