Normally
$$
E= \langle \Psi_0 | \hat{H} |\Phi_0 \rangle= \sum_{PP'HH'}C_H^{*P}\langle \Phi_H^P | \hat{H} |\Phi_{H'}^{P'} \rangle C_{H'}^{P'},
$$
is solved by diagonalization setting up the Hamiltonian matrix defined by the basis of all possible Slater determinants. A diagonalization
is equivalent to finding the variational minimum of
$$
\langle \Psi_0 | \hat{H} |\Phi_0 \rangle-\lambda \langle \Psi_0 |\Phi_0 \rangle,
$$
where \( \lambda \) is a variational multiplier to be identified with the energy of the system.
The minimization process results in
$$
\delta\left[ \langle \Psi_0 | \hat{H} |\Phi_0 \rangle-\lambda \langle \Psi_0 |\Phi_0 \rangle\right]=
$$
$$
\sum_{P'H'}\left\{\delta[C_H^{*P}]\langle \Phi_H^P | \hat{H} |\Phi_{H'}^{P'} \rangle C_{H'}^{P'}+
C_H^{*P}\langle \Phi_H^P | \hat{H} |\Phi_{H'}^{P'} \rangle \delta[C_{H'}^{P'}]-
\lambda( \delta[C_H^{*P}]C_{H'}^{P'}+C_H^{*P}\delta[C_{H'}^{P'}]\right\} = 0.
$$
Since the coefficients \( \delta[C_H^{*P}] \) and \( \delta[C_{H'}^{P'}] \) are complex conjugates it is necessary and sufficient to require the quantities that multiply with \( \delta[C_H^{*P}] \) to vanish.