Because of this property, automatically \( \hat{a}^\dagger_i \hat{a}^\dagger_i = 0 \),
enforcing the Pauli exclusion principle. Thus when writing a Slater determinant
using creation operators,
$$
\hat{a}^\dagger_i \hat{a}^\dagger_j \hat{a}^\dagger_k \ldots |0 \rangle
$$
each index \( i,j,k, \ldots \) must be unique.