We can then expand our exact state function for the ground state
as
$$
|\Psi_0\rangle=C_0|\Phi_0\rangle+\sum_{ai}C_i^a|\Phi_i^a\rangle+\sum_{abij}C_{ij}^{ab}|\Phi_{ij}^{ab}\rangle+\dots
=(C_0+\hat{C})|\Phi_0\rangle,
$$
where we have introduced the so-called correlation operator
$$
\hat{C}=\sum_{ai}C_i^a\hat{a}_{a}^{\dagger}\hat{a}_i +\sum_{abij}C_{ij}^{ab}\hat{a}_{a}^{\dagger}\hat{a}_{b}^{\dagger}\hat{a}_j\hat{a}_i+\dots
$$
Since the normalization of \( \Psi_0 \) is at our disposal and since \( C_0 \) is by hypothesis non-zero, we may arbitrarily set \( C_0=1 \) with
corresponding proportional changes in all other coefficients. Using this so-called intermediate normalization we have
$$
\langle \Psi_0 | \Phi_0 \rangle = \langle \Phi_0 | \Phi_0 \rangle = 1,
$$
resulting in
$$
|\Psi_0\rangle=(1+\hat{C})|\Phi_0\rangle.
$$