We rewrite
$$
|\Psi_0\rangle=C_0|\Phi_0\rangle+\sum_{ai}C_i^a|\Phi_i^a\rangle+\sum_{abij}C_{ij}^{ab}|\Phi_{ij}^{ab}\rangle+\dots,
$$
in a more compact form as
$$
|\Psi_0\rangle=\sum_{PH}C_H^P\Phi_H^P=\left(\sum_{PH}C_H^P\hat{A}_H^P\right)|\Phi_0\rangle,
$$
where \( H \) stands for \( 0,1,\dots,n \) hole states and \( P \) for \( 0,1,\dots,n \) particle states.
Our requirement of unit normalization gives
$$
\langle \Psi_0 | \Phi_0 \rangle = \sum_{PH}|C_H^P|^2= 1,
$$
and the energy can be written as
$$
E= \langle \Psi_0 | \hat{H} |\Phi_0 \rangle= \sum_{PP'HH'}C_H^{*P}\langle \Phi_H^P | \hat{H} |\Phi_{H'}^{P'} \rangle C_{H'}^{P'}.
$$