A typical form of the nuclear force

Here we display a typical way to parametrize (non-relativistic expression) the nuclear two-body force in terms of some operators, the central part, the spin-spin part and the central force. $$ V(\mathbf{r})= \left\{ C_c + C_\mathbf{\sigma} \mathbf{\sigma}_1\cdot\mathbf{\sigma}_2 + C_T \left( 1 + {3\over m_\alpha r} + {3\over\left(m_\alpha r\right)^2}\right) S_{12} (\hat r)\right. $$ $$ \left. + C_{SL} \left( {1\over m_\alpha r} + {1\over \left( m_\alpha r\right)^2} \right) \mathbf{L}\cdot \mathbf{S} \right\} \frac{e^{-m_\alpha r}}{m_\alpha r} $$ How do we derive such terms? (Note: no isospin dependence and that the above is an approximation)