The one-pion exchange contribution (see derivation below), can be written as $$ V_{\pi}(\mathbf{r})= -\frac{f_{\pi}^{2}}{4\pi m_{\pi}^{2}}\mathbf{ \tau}_1\cdot\mathbf{\tau}_2 \frac{1}{3}\left\{\mathbf{ \sigma}_1\cdot\mathbf{ \sigma}_2+\left( 1 + {3\over m_\pi r} + {3\over\left(m_\pi r\right)^2}\right) S_{12} (\hat r)\right\} \frac{e^{-m_\pi r}}{m_\pi r}. $$ Here the constant \( f_{\pi}^{2}/4\pi\approx 0.08 \) and the mass of the pion is \( m_\pi\approx 140 \) MeV/$\mbox{c}^2$.