Using these relations, together with \( \{\gamma_{5},\gamma_{\mu}\}=0 \), we find $$ \begin{eqnarray*} \overline{u}(p_{1}')\gamma_{5}\gamma_{\mu}(p_{1}-p_{1}')^{\mu}u(p_{1}) &=&m\overline{u}(p_{1}')\gamma_{5}u(p_{1})+\overline{u}(p_{1}')\gamma_{\mu} p_{1}'^{\mu}\gamma_{5}u(p_{1}) \nonumber \\ &=&2m\overline{u}(p_{1}')\gamma_{5}u(p_{1}) \nonumber \end{eqnarray*} $$ and $$ \overline{u}(p_{2}')\gamma_{5}\gamma_{\mu}(p_{2}'-p_{2})^{\mu}= -2m\overline{u}(p_{2}')\gamma_{5}u(p_{1}). $$