Using the orthogonality properties of the Clebsch-Gordan coefficients,
$$
\sum_{m_am_b}\langle j_am_aj_bm_b|JM\rangle\langle j_am_aj_bm_b|J'M'\rangle=\delta_{JJ'}\delta_{MM'},
$$
and
$$
\sum_{JM}\langle j_am_aj_bm_b|JM\rangle\langle j_am_a'j_bm_b'|JM\rangle=\delta_{m_am_a'}\delta_{m_bm_b'},
$$
we can also express the two-body matrix element in \( m \)-scheme in terms of that in \( J \)-scheme, that is, if we multiply with
$$
\sum_{JMJ'M'}\langle j_am_a'j_bm_b'|JM\rangle\langle j_cm_c'j_dm_d'|J'M'\rangle
$$
from left in
$$
\langle (j_aj_b) JM | \hat{V} | (j_cj_d) JM \rangle = N_{ab}N_{cd}\sum_{m_am_bm_cm_d}\langle j_am_aj_bm_b|JM\rangle\langle j_cm_cj_dm_d|JM\rangle
$$
$$
\times \langle (j_am_aj_bm_b)M| \hat{V} | (j_cm_cj_dm_d)M\rangle,
$$
we obtain
$$
\langle (j_am_aj_bm_b)M | \hat{V} | (j_cm_cj_dm_d)M\rangle=\frac{1}{N_{ab}N_{cd}}\sum_{JM}\langle j_am_aj_bm_b|JM\rangle\langle j_cm_cj_dm_d|JM\rangle
$$
$$
\times \langle (j_aj_b) JM | \hat{V} | (j_cj_d) JM \rangle.
$$