Using the reduced matrix element of the spin
operators defined as
$$
\begin{eqnarray*}
\langle S\vert \vert\left[{\bf \sigma}_1 \otimes {\bf \sigma}_2\right]^{(2)} \vert \vert S' \rangle
& = &
\sqrt{(2S+1)(2S'+1)5}
\left\{\begin{array}{ccc} s_1&s_2&S \\s_3&s_4&S' \\ 1&1&2\end{array}\right\}\\
&\times&
\langle s_1 \vert \vert {\bf \sigma}_1 \vert \vert s_3\rangle
\langle s_2 \vert\vert {\bf \sigma}_2 \vert \vert s_4\rangle
\end{eqnarray*}
$$
and inserting these expressions for the two reduced matrix elements we get
$$
\begin{array}{ll}
&\\
\langle lSJ\vert V\vert l'S'J\rangle =&(-1)^{S+J}\sqrt{30(2l+1)(2l'+1)(2S+1)(2S'+1)}\\
&\times\left\{\begin{array}{ccc}l&S &J \\l'&S&2\end{array}\right\}
\left(\begin{array}{ccc}l&2&l'\\0&0&0\end{array}\right)
\left\{\begin{array}{ccc}s_{1}&s_{2}&S\\s_{3}&s_{4}&S'\\
1&1&2\end{array}
\right\}\\
&\times\langle s_{1}\vert\vert \sigma_{1}\vert\vert s_{3}\rangle
\langle s_{2}\vert\vert \sigma_{2}\vert \vert s_{4}\rangle.
\end{array}
$$