We can then use this relation to rewrite the reduced matrix element containing the
position vector as
$$
\begin{eqnarray*}
\langle l \vert\vert\left[{\bf r} \otimes {\bf r} \right]^{(2)} \vert \vert l'\rangle
& = &
\sqrt{4\pi}\sqrt{ \frac{2}{15}}r^2 \langle l \vert\vert Y_2 \vert \vert l'\rangle \\
& = &\sqrt{4\pi}\sqrt{ \frac{2}{15}} r^2 (-1)^l
\sqrt{\frac{(2l+1)5(2l'+1)}{4\pi}}
\left(\begin{array}{ccc} l&2&l' \\ 0&0&0\end{array}\right)
\end{eqnarray*}
$$