In case \( r=0 \), that is we two tensor operators coupled to a scalar, we can use (with \( p=q \)) $$ \left\{\begin{array}{ccc} j_a & j_b& J \\ j_c & j_d & J' \\ p &p & 0\end{array}\right\}=\frac{\delta_{JJ'} \delta_{pq}}{\sqrt{(2J+1)(2J+1)}} (-1)^{j_b+j_c+2J} \begin{Bmatrix} j_a & j_b & J\\ j_d & j_c & p \end{Bmatrix}, $$ and obtain $$ \langle (j_aj_b)J||W^{0}||(j_cj_d)J'\rangle=(-1)^{j_b+j_c+2J}\langle j_a||T^p||j_c\rangle\langle j_b||U^p||j_d\rangle \begin{Bmatrix} j_a & j_b & J\\ j_d & j_c & p \end{Bmatrix}. $$