A useful case is when say \( J=0 \) in
$$
\left\{\begin{array}{ccc} j_a & j_b& J_{ab} \\ j_c & j_d & J_{cd} \\ J_{ac} & J_{bd}& 0\end{array}\right\}=\frac{\delta_{J_{ab}J_{cd}} \delta_{J_{ac}J_{bd}}}{\sqrt{(2J_{ab}+1)(2J_{ac}+1)}} (-1)^{j_b+J_{ab}+j_c+J_{ac}} \begin{Bmatrix} j_a & j_b & J_{ab}\\ j_d & j_c & J_{ac} \end{Bmatrix}.
$$