We need that
the coordinate vector \( {\bf r} \) can be written in terms of spherical
components as
$$
{\bf r}_\alpha = r\sqrt{\frac{4\pi}{3}} Y_{1\alpha}
$$
Using this expression we get
$$
\begin{eqnarray*}
\left[{\bf r} \otimes {\bf r} \right]^{(2)}_\mu &=& \frac{4\pi}{3}r^2
\sum_{\alpha ,\beta}\langle 1\alpha 1\beta\vert 2\mu \rangle Y_{1\alpha} Y_{1\beta}
\end{eqnarray*}
$$