To obtain a \( V \)-matrix in a h.o. basis, we need
the transformation
$$
\langle nNlL{\cal J}ST\vert\hat{V}\vert n'N'l'L'{\cal J}S'T\rangle,
$$
with \( n \) and \( N \) the principal quantum numbers of the relative and
center-of-mass motion, respectively.
$$
\vert nlNL{\cal J}ST\rangle= \int k^{2}K^{2}dkdKR_{nl}(\sqrt{2}\alpha k)
R_{NL}(\sqrt{1/2}\alpha K)
\vert klKL{\cal J}ST\rangle.
$$
The parameter \( \alpha \) is the chosen oscillator length.