We have that
$$
\langle \Phi^J_{M+1}|\Psi^{J}_{M+1}\rangle=\left((J-M)(J+M+1)\right)^{-1/2}\langle \hat{J}_{+}\Phi^J_{M}|\Psi^{J}_{M+1}\rangle,
$$
but this is also equal to
$$
\langle \Phi^J_{M+1}|\Psi^{J}_{M+1}\rangle=\left((J-M)(J+M+1)\right)^{-1/2}\langle \Phi^J_{M}|\hat{J}_{-}\Psi^{J}_{M+1}\rangle,
$$
meaning that
$$
\langle \Phi^J_{M+1}|\Psi^{J}_{M+1}\rangle=\langle \Phi^J_M|\Psi^{J}_{M}\rangle\equiv\langle \Phi^J_{M}||T^{\lambda}||\Phi^{J'}_{M'}\rangle.
$$
The double bars indicate that this expectation value is independent of the projection \( M \).