The \( \hat{V} \)-matrix in terms of harmonic oscillator wave functions reads
$$
\langle (ab)JT|\hat{V}|(cd)JT\rangle=
{\displaystyle \sum_{\lambda \lambda ' SS' {\cal J}}\sum_{nln'l'NN'L}
\frac{\left(1-(-1)^{l+S+T}\right)}{\sqrt{(1+\delta_{ab})
(1+\delta_{cd})}}}
$$
$$
\times\langle ab|\lambda SJ\rangle \langle cd|\lambda 'S'J\rangle
\left\langle nlNL| n_{a}l_{a}n_{b}l_{b}\lambda\right\rangle
\left\langle n'l'NL| n_{c}l_{c}n_{d}l_{d}\lambda ' \right\rangle
$$
$$
\times \hat{{\cal J}}(-1)^{\lambda + \lambda ' +l +l'}
\left\{\begin{array}{ccc}L&l&\lambda\\S&J&{\cal J}
\end{array}\right\}
\left\{\begin{array}{ccc}L&l'&\lambda '\\S&J&{\cal J}
\end{array}\right\}
$$
$$
\times\langle nNlL{\cal J}ST\vert\hat{V}\vert n'N'l'L'{\cal J}S'T\rangle.
$$
The label \( a \) represents here all the single particle quantum numbers
\( n_{a}l_{a}j_{a} \).