The most commonly employed sp basis is the harmonic oscillator, which
in turn means that
a two-particle wave function with total angular momentum \( J \)
and isospin \( T \)
can be expressed as
$$
\begin{array}{ll}
\vert (n_{a}l_{a}j_{a})(n_{b}l_{b}j_{b})JT\rangle =&
{\displaystyle
\frac{1}{\sqrt{(1+\delta_{12})}}
\sum_{\lambda S{\cal J}}\sum_{nNlL}}
F\times \langle ab|\lambda SJ \rangle\\
&\times (-1)^{\lambda +{\cal J}-L-S}\hat{\lambda}
\left\{\begin{array}{ccc}L&l&\lambda\\S&J&{\cal J}
\end{array}\right\}\\
&\times \left\langle nlNL| n_al_an_bl_b\right\rangle
\vert nlNL{\cal J}ST\rangle ,\end{array}
\tag{4}
$$
where the term
\( \left\langle nlNL| n_al_an_bl_b\right\rangle \)
is the so-called Moshinsky-Talmi transformation coefficient (see chapter 18 of Alex Brown's notes).