Using \( 3j \) symbols we rewrote the Wigner-Eckart theorem as
$$
\langle \Phi^J_M|T^{\lambda}_{\mu}|\Phi^{J'}_{M'}\rangle\equiv(-1)^{J-M}\left(\begin{array}{ccc} J & \lambda & J' \\ -M & \mu & M'\end{array}\right)\langle \Phi^J||T^{\lambda}||\Phi^{J'}\rangle.
$$
Multiplying from the left with the same \( 3j \) symbol and summing over \( M,\mu,M' \) we obtain the equivalent relation
$$
\langle \Phi^J||T^{\lambda}||\Phi^{J'}\rangle\equiv\sum_{M,\mu,M'}(-1)^{J-M}\left(\begin{array}{ccc} J & \lambda & J' \\ -M & \mu & M'\end{array}\right)\langle \Phi^J_M|T^{\lambda}_{\mu}|\Phi^{J'}_{M'}\rangle,
$$
where we used the orthogonality properties of the \( 3j \) symbols from the previous page.