The tensor operator in the nucleon-nucleon potential
is given by
$$
\begin{array}{ll}
&\\
\langle lSJ\vert S_{12}\vert l'S'J\rangle =&
(-)^{S+J}\sqrt{30(2l+1)(2l'+1)(2S+1)(2S'+1)}\\
&\times\left\{\begin{array}{ccc}J&S'&l'\\2&l&S\end{array}\right\}
\left(\begin{array}{ccc}l'&2&l\\0&0&0\end{array}\right)
\left\{\begin{array}{ccc}s_{1}&s_{2}&S\\s_{3}&s_{4}&S'\\
1&1&2\end{array}
\right\}\\
&\times\langle s_{1}\vert\vert \sigma_{1}\vert\vert s_{3}\rangle
\langle s_{2}\vert\vert \sigma_{2}\vert \vert s_{4}\rangle,
\end{array}
$$
and it is zero for the \( ^1S_0 \) wave.
How do we get here?