Using this relation we get
$$
\begin{eqnarray*}
\left[{\bf r} \otimes {\bf r} \right]^{(2)}_\mu &=&
\sqrt{4\pi}r^2
\sum_{lm}
\sum_{\alpha ,\beta} \langle 1\alpha 1\beta\vert 2\mu \rangle \\
&&\times \langle 1\alpha 1\beta\vert l-m \rangle
\frac{(-1)^{1-1-m}}{\sqrt{2l+1}}
\left(\begin{array}{ccc} 1&1&l \\ 0 &0 &0\end{array}\right)Y_{l-m}(-1)^m\\
&=& \sqrt{4\pi}r^2
\left(\begin{array}{ccc} 1&1&2 \\ 0 &0 &0\end{array}\right)
Y_{2-\mu}\\
&=& \sqrt{4\pi}r^2 \sqrt{\frac{2}{15}}Y_{2-\mu}
\end{eqnarray*}
$$