With the modified quantity
$$
\tilde{T}^{\lambda}_{\mu}=(-1)^{\lambda+\mu}(T^{\lambda}_{-\mu})^{\dagger},
$$
we can then define the expectation value
$$
\langle \Phi^J_M|T^{\lambda}_{\mu}|\Phi^{J'}_{M'}\rangle^{\dagger} = \langle \lambda \mu J'M'|JM\rangle\langle \Phi^J||T^{\lambda}||\Phi^{J'}\rangle^*,
$$
since the Clebsch-Gordan coefficients are real. The rhs is equivalent with
$$
\langle \lambda \mu J'M'|JM\rangle\langle \Phi^J||T^{\lambda}||\Phi^{J'}\rangle^*=\langle \Phi^{J'}_{M'}|(T^{\lambda}_{\mu})^{\dagger}|\Phi^{J}_{M}\rangle,
$$
which is equal to
$$
\langle \Phi^{J'}_{M'}|(T^{\lambda}_{\mu})^{\dagger}|\Phi^{J}_{M}\rangle=(-1)^{-\lambda+\mu}\langle \lambda -\mu JM|J'M'\rangle\langle \Phi^{J'}||\tilde{T}^{\lambda}||\Phi^{J}\rangle.
$$