The tensor operator in
the nucleon-nucleon potential can be written as
$$
V=\frac{3}{r^{2}}\left[ \left[ {\bf \sigma}_1 \otimes {\bf \sigma}_2\right]^
{(2)} \otimes\left[{\bf r} \otimes {\bf r} \right]^{(2)}\right]^{(0)}_0
$$
Since the irreducible tensor
\( \left[{\bf r} \otimes {\bf r} \right]^{(2)} \)
operates only on the angular quantum numbers and
\( \left[{\bf \sigma}_1 \otimes {\bf \sigma}_2\right]^{(2)} \)
operates only on
the spin states we can write the matrix element
$$
\begin{eqnarray*}
\langle lSJ\vert V\vert lSJ\rangle & = &
\langle lSJ \vert\left[ \left[{\bf \sigma}_1 \otimes {\bf \sigma}_2\right]^{(2)} \otimes
\left[{\bf r} \otimes {\bf r} \right]^{(2)}\right]^{(0)}_0\vert l'S'J\rangle \\
& = &
(-1)^{J+l+S}
\left\{\begin{array}{ccc} l&S&J \\ l'&S'&2\end{array}\right\}
\langle l \vert\vert\left[{\bf r} \otimes {\bf r} \right]^{(2)} \vert \vert l'\rangle\\
& &
\times \langle S\vert\vert\left[{\bf \sigma}_1 \otimes {\bf \sigma}_2\right]^{(2)} \vert\vert S'\rangle
\end{eqnarray*}
$$