We have
$$
\langle Y^{l'}||Y^{\lambda}|| Y^{l}\rangle=\sum_{m\mu}\langle \lambda\mu lm|l'm'\rangle Y^{\lambda}_{\mu}Y^l_m,
$$
and for \( \theta=0 \), the spherical harmonic
$$
Y_m^l(\theta=0,\phi)=\sqrt{\frac{2l+1}{4\pi}}\delta_{m0},
$$
which results in
$$
\langle Y^{l'}||Y^{\lambda}|| Y^{l}\rangle=\left\{\frac{(2l+1)(2\lambda+1)}{4\pi(2l'+1)}\right\}^{1/2}\langle \lambda0 l0|l'0\rangle.
$$