The overlap between these two states
$$
\langle([j_a\rightarrow j_c]J_{ac}\times [j_b\rightarrow j_d]J_{bd}) JM| ([j_a\rightarrow j_b]J_{ab}\times [j_c\rightarrow j_d]J_{cd}) JM\rangle,
$$
is equal to
$$
\begin{eqnarray}
\nonumber
& & \sum_{m_iM_{ij}}\langle j_am_aj_bm_b|J_{ab}M_{ab}\rangle \langle j_cm_cj_dm_d|J_{cd}M_{cd}\rangle \langle J_{ab}M_{ab}J_{cd}M_{cd}|JM\rangle \\
& & \times\langle j_am_aj_cm_c|J_{ac}M_{ac}\rangle \langle j_bm_bj_dm_d|J_{cd}M_{bd}\rangle \langle J_{ac}M_{ac}J_{bd}M_{bd}|JM\rangle \\ \nonumber
&= & \sqrt{(2J_{ab}+1)(2J_{cd}+1)(2J_{ac}+1)(2J_{bd}+1)}\left\{\begin{array}{ccc} j_a & j_b& J_{ab} \\ j_c & j_d& J_{cd} \\J_{ac} & J_{bd}& J\end{array}\right\}
, \nonumber
\end{eqnarray}
$$
with the symbol in curly brackets \( \{\} \) being the \( 9j \)-symbol. We see that a \( 6j \) symbol involves four Clebsch-Gordan coefficients, while the \( 9j \) symbol
involves six.