Using the Pauli principle
$$
\begin{equation}
|\alpha_1\dots \alpha_i\dots \alpha_i\dots \alpha_n\rangle_{\mathrm{AS}} = 0 \tag{6}
\end{equation}
$$
it follows that
$$
\begin{equation}
a_{\alpha_i}^{\dagger} a_{\alpha_i}^{\dagger} = 0. \tag{7}
\end{equation}
$$
If we combine Eqs.
(5) and
(7), we obtain the well-known anti-commutation rule
$$
\begin{equation}
a_{\alpha}^{\dagger} a_{\beta}^{\dagger} + a_{\beta}^{\dagger} a_{\alpha}^{\dagger} \equiv
\{a_{\alpha}^{\dagger},a_{\beta}^{\dagger}\} = 0 \tag{8}
\end{equation}
$$