The action of the anti-commutator
\( \{a_\alpha^{\dagger} \),$a_\alpha\}$ on a given \( n \)-particle state is
$$
\begin{align}
a_\alpha^{\dagger} a_\alpha \underbrace{|\alpha_1\alpha_2 \dots \alpha_{n}\rangle}_{\neq \alpha} &= 0 \nonumber \\
a_\alpha a_\alpha^{\dagger} \underbrace{|\alpha_1\alpha_2 \dots \alpha_{n}\rangle}_{\neq \alpha} &=
a_\alpha \underbrace{|\alpha \alpha_1\alpha_2 \dots \alpha_{n}\rangle}_{\neq \alpha} =
\underbrace{|\alpha_1\alpha_2 \dots \alpha_{n}\rangle}_{\neq \alpha} \tag{20}
\end{align}
$$
if the single-particle state \( \alpha \) is not contained in the state.