If we interchange particles \( 1 \) and \( 2 \) we obtain
$$
\begin{eqnarray}
&& \left( \sum_i \hat{h}_0(x_i) \right) \psi_{\alpha_1}(x_1)\psi_{\alpha_1}(x_2) \dots \psi_{\alpha_n}(x_n) \nonumber \\
& =&\sum_{\alpha_2'} \langle \alpha_2'|\hat{h}_0|\alpha_2\rangle
\psi_{\alpha_1}(x_2)\psi_{\alpha_2'}(x_1) \dots \psi_{\alpha_n}(x_n) \nonumber \\
&+&\sum_{\alpha_1'} \langle \alpha_1'|\hat{h}_0|\alpha_1\rangle
\psi_{\alpha_1'}(x_2)\psi_{\alpha_2}(x_1) \dots \psi_{\alpha_n}(x_n) \nonumber \\
&+& \dots \nonumber \\
&+&\sum_{\alpha_n'} \langle \alpha_n'|\hat{h}_0|\alpha_n\rangle
\psi_{\alpha_1}(x_2)\psi_{\alpha_1}(x_2) \dots \psi_{\alpha_n'}(x_n) \tag{34}
\end{eqnarray}
$$